Patents by Inventor Bhavesh N. Desai

Bhavesh N. Desai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10965490
    Abstract: A method includes dividing, at a cable modem termination system, a transmit stream into multiple data streams. The multiple data streams include a first data stream and a second data stream. Each of the multiple data streams has a lower bit rate than a bit rate of the transmit stream. The method includes transmitting, via the cable modem termination system, the first data stream over at least a first channel of a group of channels. The method also includes transmitting, via the cable modem termination system, the second data stream over at least a second channel of the group of channels. The group of channels supports traffic to a plurality of destinations. The first channel and the second channel are frequency-division multiplexed channels.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: March 30, 2021
    Assignee: AT&T INTELLECTUAL PROPERTY II, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Publication number: 20180302236
    Abstract: A method includes dividing, at a cable modem termination system, a transmit stream into multiple data streams. The multiple data streams include a first data stream and a second data stream. Each of the multiple data streams has a lower bit rate than a bit rate of the transmit stream. The method includes transmitting, via the cable modem termination system, the first data stream over at least a first channel of a group of channels. The method also includes transmitting, via the cable modem termination system, the second data stream over at least a second channel of the group of channels. The group of channels supports traffic to a plurality of destinations. The first channel and the second channel are frequency-division multiplexed channels.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 10009190
    Abstract: A method at a cable modem termination system includes dividing a transmit stream into multiple data streams and transmitting the multiple data streams over multiple radio frequency channels of a group of channels. The group of channels supports traffic to a plurality of destinations. Each channel in the group of channels is a downstream channel.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: June 26, 2018
    Assignee: AT&T INTELLECTUAL PROPERTY II, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Publication number: 20140369353
    Abstract: A method at a cable modem termination system includes dividing a transmit stream into multiple data streams and transmitting the multiple data streams over multiple radio frequency channels of a group of channels. The group of channels supports traffic to a plurality of destinations. Each channel in the group of channels is a downstream channel.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 8855147
    Abstract: A method includes receiving, at a transmit site, a first stream of packets addressed to an end user device in a first address space. The first stream of packets is encapsulated to form a second stream of packets addressed in a second address space. A first packet of the second stream of packets is assigned to a first radio frequency channel of a plurality of radio frequency channels. A second packet of the second stream of packets is assigned to a second radio frequency channel of the plurality of radio frequency channels. The first packet is transmitted via the first radio frequency channel and, in parallel, the second packet is transmitted via the second radio frequency channel.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: October 7, 2014
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward
  • Publication number: 20110261737
    Abstract: A method includes receiving, at a transmit site, a first stream of packets addressed to an end user device in a first address space. The first stream of packets is encapsulated to form a second stream of packets addressed in a second address space. A first packet of the second stream of packets is assigned to a first radio frequency channel of a plurality of radio frequency channels. A second packet of the second stream of packets is assigned to a second radio frequency channel of the plurality of radio frequency channels. The first packet is transmitted via the first radio frequency channel and, in parallel, the second packet is transmitted via the second radio frequency channel.
    Type: Application
    Filed: July 6, 2011
    Publication date: October 27, 2011
    Applicant: AT&T Intellectual Property II, L.P. (formerly known as AT&T CORP.)
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward
  • Patent number: 8000331
    Abstract: A receive device includes a plurality of demodulators and a tunnel destination. The demodulators are configured to receive multiple data streams, each of the multiple data streams having a bit rate that is lower than a bit rate of a transmit data stream. The tunnel destination is configured to recombine the multiple data streams to provide a receive data stream having a bit rate equal to the bit rate of the transmit data stream. At least one of multiple radio frequency channels is connected to a legacy user between a transmit site and the receive device.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 16, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd L. Totland, Jacobus Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7990977
    Abstract: A method of sending data from a transmit site to a receive device includes dividing a first transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate that is lower than the first bit rate. Each of the multiple data streams is transmitted over a cable network having multiple radio frequency channels. The multiple data streams are recombined at the receive device to provide a receive data stream having a bit rate equal to the first bit rate. A second transmit data stream is transmitted over one of the radio frequency channels to a legacy user connected to the one radio frequency channel between the transmit site and the receive device.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 2, 2011
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7831147
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 9, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100265942
    Abstract: A receive device includes a plurality of demodulators and a tunnel destination. The demodulators are configured to receive multiple data streams, each of the multiple data streams having a bit rate that is lower than a bit rate of a transmit data stream. The tunnel destination is configured to recombine the multiple data streams to provide a receive data stream having a bit rate equal to the bit rate of the transmit data stream. At least one of multiple radio frequency channels is connected to a legacy user between a transmit site and the receive device.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 21, 2010
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7783196
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 24, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100208751
    Abstract: A method of sending data from a transmit site to a receive device includes dividing a first transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate that is lower than the first bit rate. Each of the multiple data streams is transmitted over a cable network having multiple radio frequency channels. The multiple data streams are recombined at the receive device to provide a receive data stream having a bit rate equal to the first bit rate. A second transmit data stream is transmitted over one of the radio frequency channels to a legacy user connected to the one radio frequency channel between the transmit site and the receive device.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 19, 2010
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E.Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7734179
    Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: June 8, 2010
    Assignee: AT&T Corp.
    Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
  • Publication number: 20090290543
    Abstract: A method includes receiving a plurality of radio frequency (RF) channels in parallel at a receive site, and demodulating the RF channels using a plurality of demodulators of the receive site to generate a plurality of streams of packets, each stream of packets having a first address space. The method also includes combining the plurality of streams of packets at a tunneling destination of the receive site to generate a first stream of packets having a second address space.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd L. Totland, Jacobus Van der Merwe, Sheryl Leigh Woodward
  • Publication number: 20090067841
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7450850
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 11, 2008
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7283749
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 16, 2007
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7190903
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 13, 2007
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7068937
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: June 27, 2006
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 6993050
    Abstract: A transmit and receive system for transmitting data between a transmit site and a receive site. The system includes a tunnel source, router and modulator for dividing a transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate which is lower than the first bit rate, transmitting each of the multiple data streams over a plurality of RF channels. The system further includes a demodulator and destination source for recombining the multiple data streams at the receive site to provide a receive data stream having a bit rate equal to the first bit rate.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: January 31, 2006
    Assignee: AT&T Corp.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward