Patents by Inventor Biju Jacob

Biju Jacob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085575
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Patent number: 11860319
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: January 2, 2024
    Assignee: GE Precision Healthcare LLC
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Publication number: 20230363728
    Abstract: There is provided an X-ray imaging system having an X-ray source, an X-ray detector and a collimator assembly in the X-ray path between the X-ray source and the X-ray detector. The X-ray detector comprises a plurality of detector modules arranged side-by-side and adapted to be oriented towards the X-ray source, the detector modules being arranged side-by-side along a direction substantially orthogonal to the direction of incoming X-rays. The collimator assembly is based on a plurality of spaced collimator plates arranged side-by-side in a direction coinciding with the direction of the detector modules. The collimator assembly further comprises a physically stabilizing lateral support structure arranged in a lateral plane extending in a direction substantially orthogonal to the direction of incoming X-rays.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 16, 2023
    Inventors: Biju Jacob, Mark Adamak, Brian Yanoff, Jonathan Short, Bruno Kristiaan Bernard De Man, Katsumasa Nose, Hengshan Gao
  • Publication number: 20230355192
    Abstract: An X-ray detector is provided. The X-ray detector includes multiple detector sub-modules. Each detector sub-module includes a semiconductor layer and multiple detector elements. A plurality of detector elements is disposed on the semiconductor layer. Wiring traces extending from the plurality of detector elements to readout circuitry, where each detector element is coupled to a respective wiring trace. One or more of the wiring traces extend over one or more detector elements of the plurality of detector elements. Processing circuitry is configured to perform coincidence detection to determine which detector element of the plurality of detector elements is associated with a location of an X-ray hit when the X-ray coincidently hits one of the detector elements of the plurality of detector elements and one or more of the wiring traces coupled to respective detector elements of the plurality of detector elements.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Inventors: Brian David Yanoff, Biju Jacob
  • Publication number: 20230288580
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 14, 2023
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Patent number: 11744531
    Abstract: A method for estimating motion of an X-ray focal spot is provided. The acts of the method include acquiring image data by causing X-rays to be emitted from the X-ray focal spot of an X-ray source toward a radiation detector comprising multiple channels, wherein a subset of the channels each have a collimator blade positioned above the respective channel. The acts of the method also include independently estimating X-ray focal spot motion in an X-direction for the X-ray focal spot relative to an isocenter of the radiation detector and in a Y-direction along a direction of the X-rays for the X-ray focal spot relative to the isocenter based on respective channel gains for a first channel and a second channel of the subset of the channels.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: September 5, 2023
    Assignee: GE Precision Healthcare LLC
    Inventor: Biju Jacob
  • Patent number: 11723611
    Abstract: An X-ray detector is provided. The X-ray detector includes multiple detector sub-modules. Each detector sub-module includes a semiconductor layer and multiple detector elements. A plurality of detector elements is disposed on the semiconductor layer. Wiring traces extending from the plurality of detector elements to readout circuitry, where each detector element is coupled to a respective wiring trace. The wiring traces are routed within a gap between adjacent detector elements of the plurality of detector elements. Processing circuitry is configured to perform coincidence detection to determine which detector element of the plurality of detector elements is associated with a location of an X-ray hit when the X-ray coincidently hits one of the detector elements of the plurality of detector elements and one or more of the wiring traces coupled to respective detector elements of the plurality of detector elements.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 15, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Brian David Yanoff, Biju Jacob
  • Publication number: 20220409152
    Abstract: A method for estimating motion of an X-ray focal spot is provided. The acts of the method include acquiring image data by causing X-rays to be emitted from the X-ray focal spot of an X-ray source toward a radiation detector comprising multiple channels, wherein a subset of the channels each have a collimator blade positioned above the respective channel. The acts of the method also include independently estimating X-ray focal spot motion in an X-direction for the X-ray focal spot relative to an isocenter of the radiation detector and in a Y-direction along a direction of the X-rays for the X-ray focal spot relative to the isocenter based on respective channel gains for a first channel and a second channel of the subset of the channels.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Inventor: Biju Jacob
  • Publication number: 20220304638
    Abstract: An X-ray detector is provided. The X-ray detector includes multiple detector sub-modules. Each detector sub-module includes a semiconductor layer and multiple detector elements. A plurality of detector elements is disposed on the semiconductor layer. Wiring traces extending from the plurality of detector elements to readout circuitry, where each detector element is coupled to a respective wiring trace. The wiring traces are routed within a gap between adjacent detector elements of the plurality of detector elements. Processing circuitry is configured to perform coincidence detection to determine which detector element of the plurality of detector elements is associated with a location of an X-ray hit when the X-ray coincidently hits one of the detector elements of the plurality of detector elements and one or more of the wiring traces coupled to respective detector elements of the plurality of detector elements.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Brian David Yanoff, Biju Jacob
  • Publication number: 20220249040
    Abstract: An X-ray detector is provided. The X-ray detector includes multiple detector sub-modules. Each detector sub-module includes a semiconductor layer and multiple detector elements. A first detector element of the multiple detector elements includes a first electrode disposed on a first doped implant and a second detector element of the multiple detector elements includes a second electrode disposed on a second doped implant. The first and second detector elements are disposed on the semiconductor layer adjacent to each other with a gap therebetween. Each detector sub-module also includes wiring traces extending from one or more detector elements of the multiple detector elements to readout circuitry. The wiring traces are routed within the gap between the first and second electrodes. The first doped implant extends underneath a portion of the wiring traces is configured to shield the wiring traces from electrical activity occurring underneath due to absorption of an X-ray.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: Brian David Yanoff, Biju Jacob
  • Patent number: 11389125
    Abstract: An X-ray detector is provided. The X-ray detector includes multiple detector sub-modules. Each detector sub-module includes a semiconductor layer and multiple detector elements. A first detector element of the multiple detector elements includes a first electrode disposed on a first doped implant and a second detector element of the multiple detector elements includes a second electrode disposed on a second doped implant. The first and second detector elements are disposed on the semiconductor layer adjacent to each other with a gap therebetween. Each detector sub-module also includes wiring traces extending from one or more detector elements of the multiple detector elements to readout circuitry. The wiring traces are routed within the gap between the first and second electrodes. The first doped implant extends underneath a portion of the wiring traces is configured to shield the wiring traces from electrical activity occurring underneath due to absorption of an X-ray.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: July 19, 2022
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Brian David Yanoff, Biju Jacob
  • Patent number: 11389124
    Abstract: The present disclosure relates to fabrication and use of a phase-contrast imaging detector that includes sub-pixel resolution electrodes or photodiodes spaced to correspond to a phase-contrast interference pattern. A system using such a detector may employ fewer gratings than are typically used in a phase-contrast imaging system, with certain functionality typically provided by a detector-side analyzer grating being performed by sub-pixel resolution structures (e.g., electrodes or photodiodes) of the detector. Measurements acquired using the detector may be used to determine offset, amplitude, and phase of a phase-contrast interference pattern without multiple acquisitions at different phase steps.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Uwe Wiedmann, Biju Jacob, Peter Michael Edic, Brian David Yanoff
  • Patent number: 11253212
    Abstract: The present disclosure relates to the use of X-ray detector cassettes that may be abutted or overlapped to form a detector assembly suitable for imaging objects that are too large to image using a single X-ray detector cassette. Such a detector assembly may be customized in terms of the size and/or shape of the field-of-view (FOV). In certain embodiments the radiation-sensitive electronics (e.g., readout electronics) are positioned to the side of the X-ray detecting components (e.g., scintillator, TFT array, and so forth), allowing the cassette to be thin relative to other detector devices and allowing the electronics to remain outside the X-ray beam path.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: February 22, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Biju Jacob, Douglas Albagli, William Robert Ross, William Andrew Hennessy, Eric Patrick Davis, Bruno Kristiaan Bernard De Man, Nicholas Ryan Konkle
  • Patent number: 11141128
    Abstract: The techniques disclosed may be used to detect and correct channel gain errors resulting from X-ray focal spot mis-alignment during the course of a scan. One benefit of the present invention relative to conventional techniques is that additional hardware is not required for detection of focal spot drift. Instead, the static mis-alignment of each blade is taken into account as part of estimating and correcting X-ray focal spot drift or mis-alignment. In this manner, the risk of image artefacts due to focal spot motion is reduced and the need for costly hardware solutions to detect focal spot motion is avoided.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: October 12, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Biju Jacob, Mingye Wu, Mark Allen Adamak
  • Publication number: 20210244373
    Abstract: The present disclosure relates to fabrication and use of a phase-contrast imaging detector that includes sub-pixel resolution electrodes or photodiodes spaced to correspond to a phase-contrast interference pattern. A system using such a detector may employ fewer gratings than are typically used in a phase-contrast imaging system, with certain functionality typically provided by a detector-side analyzer grating being performed by sub-pixel resolution structures (e.g., electrodes or photodiodes) of the detector. Measurements acquired using the detector may be used to determine offset, amplitude, and phase of a phase-contrast interference pattern without multiple acquisitions at different phase steps.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 12, 2021
    Inventors: Uwe Wiedmann, Biju Jacob, Peter Michael Edic, Brian David Yanoff
  • Publication number: 20210204889
    Abstract: The present disclosure relates to the use of X-ray detector cassettes that may be abutted or overlapped to form a detector assembly suitable for imaging objects that are too large to image using a single X-ray detector cassette. Such a detector assembly may be customized in terms of the size and/or shape of the field-of-view (FOV). In certain embodiments the radiation-sensitive electronics (e.g., readout electronics) are positioned to the side of the X-ray detecting components (e.g., scintillator, TFT array, and so forth), allowing the cassette to be thin relative to other detector devices and allowing the electronics to remain outside the X-ray beam path.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Inventors: Biju Jacob, Douglas Albagli, William Robert Ross, William Andrew Hennessy, Eric Patrick Davis, Bruno Kristiaan Bernard De Man, Nicholas Ryan Konkle
  • Patent number: 11054532
    Abstract: There is provided an x-ray detector having a number of x-ray detector sub-modules. Each detector sub-module is an edge-on detector sub-module having an array of detector elements extending in at least two directions, wherein one of the directions has a component in the direction of incoming x-rays. The detector sub-modules are stacked one after the other and/or arranged side-by-side. For at least part of the detector sub-modules, the detector sub-modules are arranged for providing a gap between adjacent detector sub-modules, where at least part of the gap is not directed linearly towards the x-ray focal point of an x-ray source.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: July 6, 2021
    Assignees: PRISMATIC SENSORS AB, GENERAL ELECTRIC COMPANY
    Inventors: Torbjörn Hjärn, Brian David Yanoff, Brian Breuer, Brian Joseph Graves, Cheng Xu, Biju Jacob, Peter Michael Edic, Gregory Scott Zeman
  • Publication number: 20210177372
    Abstract: The techniques disclosed may be used to detect and correct channel gain errors resulting from X-ray focal spot mis-alignment during the course of a scan. One benefit of the present invention relative to conventional techniques is that additional hardware is not required for detection of focal spot drift. Instead, the static mis-alignment of each blade is taken into account as part of estimating and correcting X-ray focal spot drift or mis-alignment. In this manner, the risk of image artefacts due to focal spot motion is reduced and the need for costly hardware solutions to detect focal spot motion is avoided.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Biju Jacob, Mingye Wu, Mark Allen Adamak
  • Patent number: 10898159
    Abstract: The present disclosure relates to determining the position of an X-ray focal spot in real time during an imaging process and using the focal spot position to ensure alignment of the focal spot and high-aspect detector elements or to correct for focal spot misalignment, thereby mitigating image artifacts. For example, the focal spot position may be monitored and may be adjusted in real-time using electromagnetic electron beam steering during a scan. Alternatively, previously determined functional relationships between focal spot position and measured data may be applied to address or correct for focal spot misalignment in the acquired data.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: January 26, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Michael Edic, Biju Jacob
  • Patent number: 10823858
    Abstract: An imager panel for an x-ray detector for obtaining x-ray images of an object is provided that includes a first portion disposed at the center of the hybrid imager panel that can produce images of a first resolution and a second portion disposed at least partially around the first portion that is capable of producing images of a second resolution. The hybrid imager panel provides a hybrid detector that can be selectively operated to obtain images of varying resolutions corresponding to the first resolution from the first portion, the second resolution from the second portion or a combination thereof.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: James Liu, Nicholas Konkle, Biju Jacob, Douglas Albagli, William Hennessy, Habib Vafi