Patents by Inventor Billy W. Colston, Jr.

Billy W. Colston, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10258988
    Abstract: Devices and methods for generating droplets. An exemplary device comprises a substantially planar base portion including a bottom surface having a plurality of microfluidic channels formed therein as recessed regions of the bottom surface. The device also comprises a plurality of protrusions projecting from a top surface of the base portion and each formed integrally with the base portion. The device further comprises a sample well, a carrier well, and a droplet well. Each well has an upper portion created by one of the protrusions. A cover layer is attached to the bottom surface of the base portion and seals a bottom side of each microfluidic channel.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 16, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kevin D. Ness, Benjamin J. Hindson, Billy W. Colston, Jr., Donald A. Masquelier
  • Patent number: 10167509
    Abstract: Provided herein are improved methods, compositions, and kits for analysis of nucleic acids. The improved methods, compositions, and kits can enable copy number estimation of a nucleic acid in a sample. Also provided herein are methods, compositions, and kits for determining the linkage of two or more copies of a target nucleic acid in a sample (e.g. whether the two or more copies are on the same chromosome or different chromosomes) or for phasing alleles.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: January 1, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John F. Regan, Serge Saxonov, Michael Y. Lucero, Benjamin J. Hindson, Phillip Belgrader, Simant Dube, Austin P. So, Jeffrey C. Mellen, Nicholas J. Heredia, Kevin D. Ness, Billy W. Colston, Jr.
  • Patent number: 10166522
    Abstract: System, including methods, apparatus, compositions, and kits, for the mixing of small volumes of fluid by coalescence of multiple emulsions.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 1, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. Hindson, Billy W. Colston, Jr., Kevin D. Ness, Donald A. Masquelier
  • Publication number: 20180147573
    Abstract: Devices and methods for generating droplets. An exemplary device comprises a substantially planar base portion including a bottom surface having a plurality of microfluidic channels formed therein as recessed regions of the bottom surface. The device also comprises a plurality of protrusions projecting from a top surface of the base portion and each formed integrally with the base portion. The device further comprises a sample well, a carrier well, and a droplet well. Each well has an upper portion created by one of the protrusions. A cover layer is attached to the bottom surface of the base portion and seals a bottom side of each microfluidic channel.
    Type: Application
    Filed: September 18, 2017
    Publication date: May 31, 2018
    Inventors: Amy L. Hiddessen, Donald A. Masquelier, Kevin D. Ness, Benjamin J. Hindson, Anthony J. Makarewicz, Jr., Erin R. Chia, Billy W. Colston, Jr., Serge Saxonov, Svilen S. Tzonev, Michael Y. Lucero, Ryan T. Koehler
  • Patent number: 9901927
    Abstract: Methods of generating droplets. In an exemplary method, a device including a sample well, a carrier well, a droplet well, and a plurality of microfluidic channels is selected. The microfluidic channels include a first channel, a second channel, and a third channel. A discrete volume of sample-containing fluid is placed into the sample well, and a discrete volume of carrier fluid is placed into the carrier well. A pressure differential is created after placing the discrete volumes, to cause fluid flow. Sample-containing fluid flows from the sample well to a droplet-generation region of the device via the first channel. Carrier fluid flows from the carrier well to the droplet-generation region via the second channel. Sample-containing droplets and carrier fluid flow from the droplet-generation region to the droplet well via the third channel.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 27, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. Hindson, Kevin D. Ness, Billy W. Colston, Jr., Fred P. Milanovich, Donald A. Masquelier
  • Publication number: 20170151558
    Abstract: System, including methods, apparatus, and kits, for forming emulsions. In an exemplary method of generating droplets, a device may be selected that includes a plurality of emulsion-formation units each including a sample well, a continuous-phase well, a droplet well, and a channel network that fluidically interconnects the wells and creates a droplet-generation region. A discrete volume of sample-containing fluid may be placed into the sample well of each emulsion-formation unit, and a discrete volume of continuous-phase fluid into the continuous-phase well of each emulsion-formation unit. Pressure may be applied to the device with a fluidics assembly after the step of placing, such that the plurality of emulsion-formation units generate droplets in parallel with one another. A pressure signal may be detected from the fluidics assembly. Application of the pressure may be stopped when the pressure signal indicates that a sample well is empty.
    Type: Application
    Filed: November 14, 2016
    Publication date: June 1, 2017
    Inventors: Amy L. Hiddessen, Donald A. Masquelier, Kevin D. Ness, Benjamin J. Hindson, Anthony J. Makarewicz, JR., Erin R. Chia, Billy W. Colston, JR., Serge Saxonov, Svilen S. Tzonev, Michael Y. Lucero, Ryan T. Koehler
  • Publication number: 20170144161
    Abstract: Methods of generating droplets. In an exemplary method, a device including a sample well, a carrier well, a droplet well, and a plurality of microfluidic channels is selected. The microfluidic channels include a first channel, a second channel, and a third channel. A discrete volume of sample-containing fluid is placed into the sample well, and a discrete volume of carrier fluid is placed into the carrier well. A pressure differential is created after placing the discrete volumes, to cause fluid flow. Sample-containing fluid flows from the sample well to a droplet-generation region of the device via the first channel. Carrier fluid flows from the carrier well to the droplet-generation region via the second channel. Sample-containing droplets and carrier fluid flow from the droplet-generation region to the droplet well via the third channel.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 25, 2017
    Inventors: Benjamin J. Hindson, Kevin D. Ness, Billy W. Colston, JR., Fred P. Milanovich, Donald A. Masquelier, Anthony J. Makarewicz, JR.
  • Publication number: 20170144160
    Abstract: Devices and methods for generating droplets. An exemplary device comprises a substantially planar base portion including a bottom surface having a plurality of microfluidic channels formed therein as recessed regions of the bottom surface. The device also comprises a plurality of protrusions projecting from a top surface of the base portion and each formed integrally with the base portion. The device further comprises a sample well, a carrier well, and a droplet well. Each well has an upper portion created by one of the protrusions. A cover layer is attached to the bottom surface of the base portion and seals a bottom side of each microfluidic channel.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 25, 2017
    Inventors: Kevin D. Ness, Benjamin J. Hindson, Billy W. Colston, JR., Donald A. Masquelier
  • Publication number: 20170144116
    Abstract: Methods of making a droplet-generating device. In an exemplary method, an upper member is injection molded. The upper member includes a bottom surface and also includes a first microfluidic channel, a second microfluidic channel, and a third microfluidic channel each formed in the bottom surface. The upper member has a plurality of openings each extending completely through the upper member from the bottom surface and creating a side wall region of a sample well, a carrier well, and a droplet well. A cover layer is attached to the bottom surface of the upper member, such that the cover layer seals a bottom side of each microfluidic channel. The microfluidic channels meet one another to create a droplet-generation region. The sample well, the carrier well, and the droplet well are connected to the droplet-generation region via the first, second, and third microfluidic channels, respectively.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 25, 2017
    Inventors: Kevin D. Ness, Benjamin J. Hindson, Billy W. Colston, JR., Donald A. Masquelier
  • Patent number: 9422586
    Abstract: A method of rapid, genome and proteome based identification of unknown pathogenic or non-pathogenic organisms in a complex sample. The entire sample is analyzed by creating millions of emulsion encapsulated microdroplets, each containing a single pathogenic or non-pathogenic organism sized particle and appropriate reagents for amplification. Following amplification, the amplified product is analyzed.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: August 23, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Billy W. Colston, Jr., Joseph P. Fitch, Benjamin J. Hindson, J. Chance Carter, Neil Reginald Beer
  • Patent number: 9417190
    Abstract: System, including methods and apparatus, for performing droplet-based assays that are controlled and/or calibrated using signals detected from droplets.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: August 16, 2016
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. Hindson, Billy W. Colston, Jr., Kevin D. Ness, Donald A. Masquelier
  • Patent number: 9409177
    Abstract: An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 9, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Neil Reginald Beer, Billy W. Colston, Jr.
  • Publication number: 20160076099
    Abstract: Provided herein are improved methods, compositions, and kits for analysis of nucleic acids. The improved methods, compositions, and kits can enable copy number estimation of a nucleic acid in a sample. Also provided herein are methods, compositions, and kits for determining the linkage of two or more copies of a target nucleic acid in a sample (e.g. whether the two or more copies are on the same chromosome or different chromosomes) or for phasing alleles.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 17, 2016
    Inventors: John F. Regan, Serge Saxonov, Michael Y. Lucero, Benjamin J. Hindson, Phillip Belgrader, Simant Dube, Austin P. So, Jeffrey C. Mellen, Nicholas J. Heredia, Kevin D. Ness, Billy W. Colston, Jr.
  • Publication number: 20160059204
    Abstract: System, including methods, apparatus, compositions, and kits, for the mixing of small volumes of fluid by coalescence of multiple emulsions.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Inventors: Benjamin J. Hindson, Billy W. Colston, JR., Kevin D. Ness, Donald A. Masquelier
  • Patent number: 9243288
    Abstract: Systems, including apparatus, methods, compositions, kits, and software, for preparing, reacting, detecting, and/or analyzing samples in droplet-based assay systems, among others. The disclosure emphasizes, but is not limited to, a disposable cartridge with lysis chamber and droplet chamber, particularly for use in droplet-based assays.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 26, 2016
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kevin Dean Ness, Samuel Burd, Benjamin Joseph Hindson, Phillip Belgrader, Billy W. Colston, Jr.
  • Patent number: 9194861
    Abstract: System, including methods, apparatus, compositions, and kits, for the mixing of small volumes of fluid by coalescence of multiple emulsions.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 24, 2015
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Benjamin J. Hindson, Billy W. Colston, Jr., Kevin D. Ness, Donald A. Masquelier
  • Publication number: 20150307919
    Abstract: Method of performing a multiplexed digital assay. The method may include (1) partitioning a sample containing at least two distinct targets into droplets; (2) amplifying the at least two distinct targets within the droplets; (3) detecting light from the droplets indicative of the presence or absence of each distinct target in each droplet; and (4) calculating a level of each distinct target based on the detected light.
    Type: Application
    Filed: July 2, 2015
    Publication date: October 29, 2015
    Inventors: Kevin D. Ness, Benjamin J. Hindson, Billy W. Colston, JR.
  • Patent number: 9126160
    Abstract: A system, including method and apparatus, for forming an array of emulsions. The system may include a plate providing an array of emulsion production units each configured to produce a separate emulsion and each including a set of wells interconnected by channels that intersect to form a site of droplet generation. Each set of wells, in turn, may include (1) at least one first input well to receive a continuous phase, (2) a second input well to receive a dispersed phase, and (3) an output well configured to receive from the site of droplet generation an emulsion of droplets of the dispersed phase disposed in the continuous phase.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 8, 2015
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kevin D. Ness, Benjamin J. Hindson, Billy W. Colston, Jr., Donald A. Masquelier
  • Patent number: 9052255
    Abstract: An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 9, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Richard G. Langlois, Fred P. Milanovich, Billy W. Colston, Jr., Steve B. Brown, Don A. Masquelier, Raymond P. Mariella, Jr., Kodomudi Venkateswaran
  • Publication number: 20140200164
    Abstract: System, including methods and apparatus, for detection of spaced droplets.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 17, 2014
    Inventors: Anthony J. Makarewicz, JR., Amy L. Hiddessen, Kevin D. Ness, Donald. A. Masquelier, Billy W. Colston, JR., Benjamin J. Hindson, Serge Saxonov, Svilen S. Tzonev, Michael Y. Lucero, Ryan T. Koehler