Patents by Inventor Binghua Hu

Binghua Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128738
    Abstract: Disclosed are an arc extinguishing control system and method for a relay of an emergency power supply. A relay serves as a main switching circuit for controlling an emergency power supply, and electronic switching tubes are connected in parallel to two ends of the relay, so as to withstand a voltage jump when the relay is disconnected, and common problems of existing relays, such as arc damage and an internal resistance increase, are solved. When a heavy reverse charging current occurs after the vehicle is started, a reverse charging sensing circuit and a reverse charging feedback circuit are used, so that a reverse charging current is directly fed back to a control end of an electronic switching tube when a storage battery is reversely charged by a load, thereby realizing quick disconnection of the electronic switching tube.
    Type: Application
    Filed: March 30, 2021
    Publication date: April 18, 2024
    Inventors: Miao LIU, Bing LIU, Gongjiao TAO, Binghua HU, Zengquan LI
  • Publication number: 20240088305
    Abstract: A semiconductor device which includes two or more integrated deep trench features configured as a Zener diode. The Zener diode includes a plurality of deep trenches extending into semiconductor material of the substrate and a dielectric deep trench liner that includes a dielectric material. The deep trench further includes a doped sheath contacting the deep trench liner and an electrically conductive deep trench filler material within the deep trench. The doped sheath of adjacent deep trenches overlap and form a region of higher doping concentration which sets the breakdown voltage of the Zener diode. The Zener diode can be used as a triggering diode to limit the voltage on other components in a semiconductor device.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Umamaheswari Aghoram, Akram Ali Salman, Binghua Hu, Alexei Sadovnikov
  • Publication number: 20240030702
    Abstract: Disclosed are a method and system for short-circuit protection of emergency starting power supply. An electrical parameter of an emergency starting power supply is detected multiple times at a relatively high frequency, so as to identify whether there is an exception according to the change difference and change direction of the electrical parameter, whether the emergency starting power supply is short-circuited according to the counting determination results, and then exception protection is implemented, so that a normal start state and a short-circuit state are effectively distinguished, thereby avoiding damage caused by a short circuit. The present disclosure has good adaptability and can be adapted to various start power supplies and automobile start loads, and it can be combined with an existing starting power supply circuit structure, an additional sensing device is not required, thereby improving the use safety and experience of the emergency starting power supply.
    Type: Application
    Filed: March 16, 2021
    Publication date: January 25, 2024
    Inventors: Bing LIU, Xiangbo LI, Gongjiao TAO, Binghua HU
  • Patent number: 11869986
    Abstract: A semiconductor device which includes two or more integrated deep trench features configured as a Zener diode. The Zener diode includes a plurality of deep trenches extending into semiconductor material of the substrate and a dielectric deep trench liner that includes a dielectric material. The deep trench further includes a doped sheath contacting the deep trench liner and an electrically conductive deep trench filler material within the deep trench. The doped sheath of adjacent deep trenches overlap and form a region of higher doping concentration which sets the breakdown voltage of the Zener diode. The Zener diode can be used as a triggering diode to limit the voltage on other components in a semiconductor device.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: January 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Umamaheswari Aghoram, Akram Ali Salman, Binghua Hu, Alexei Sadovnikov
  • Patent number: 11742436
    Abstract: A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: August 29, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Binghua Hu, Yanbiao Pan, Django Trombley
  • Patent number: 11658176
    Abstract: An electronic device includes a substrate having a second conductivity type including a semiconductor surface layer with a buried layer (BL) having a first conductivity type. In the semiconductor surface layer is a first doped region (e.g., collector) and a second doped region (e.g., emitter) both having the first conductivity type, with a third doped region (e.g., a base) having the second conductivity type within the second doped region, wherein the first doped region extends below and lateral to the third doped region. At least one row of deep trench (DT) isolation islands are within the first doped region each including a dielectric liner extending along a trench sidewall from the semiconductor surface layer to the BL with an associated deep doped region extending from the semiconductor surface layer to the BL. The deep doped regions can merge forming a merged deep doped region that spans the DT islands.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: May 23, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Zaichen Chen, Akram A. Salman, Binghua Hu
  • Patent number: 11626317
    Abstract: A semiconductor device has a first trench and a second trench of a trench structure located in a substrate. The second trench is separated from the first trench by a trench space that is less than a first trench width of the first trench and less than a second trench width of the second trench. The trench structure includes a doped sheath having a first conductivity type, contacting and laterally surrounding the first trench and the second trench. The doped sheath extends from the top surface to an isolation layer and from the first trench to the second trench across the trench space. The semiconductor device includes a first region and a second region, both located in the semiconductor layer, having a second, opposite, conductivity type. The first region and the second region are separated by the first trench, the second trench, and the doped sheath.
    Type: Grant
    Filed: October 24, 2020
    Date of Patent: April 11, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Binghua Hu, Ye Shao, John K Arch
  • Publication number: 20230066563
    Abstract: A semiconductor device which includes two or more integrated deep trench features configured as a Zener diode. The Zener diode includes a plurality of deep trenches extending into semiconductor material of the substrate and a dielectric deep trench liner that includes a dielectric material. The deep trench further includes a doped sheath contacting the deep trench liner and an electrically conductive deep trench filler material within the deep trench. The doped sheath of adjacent deep trenches overlap and form a region of higher doping concentration which sets the breakdown voltage of the Zener diode. The Zener diode can be used as a triggering diode to limit the voltage on other components in a semiconductor device.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Umamaheswari Aghoram, Akram Ali Salman, Binghua Hu, Alexei Sadovnikov
  • Publication number: 20220392886
    Abstract: An ESD cell includes an n+ buried layer (NBL) within a p-epi layer on a substrate. An outer deep trench isolation ring (outer DT ring) includes dielectric sidewalls having a deep n-type diffusion (DEEPN diffusion) ring (DEEPN ring) contacting the dielectric sidewall extending downward to the NBL. The DEEPN ring defines an enclosed p-epi region. A plurality of inner DT structures are within the enclosed p-epi region having dielectric sidewalls and DEEPN diffusions contacting the dielectric sidewalls extending downward from the topside surface to the NBL. The inner DT structures have a sufficiently small spacing with one another so that adjacent DEEPN diffusion regions overlap to form continuous wall of n-type material extending from a first side to a second side of the outer DT ring dividing the enclosed p-epi region into a first and second p-epi region. The first and second p-epi region are connected by the NBL.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Henry Litzmann EDWARDS, Akram A. SALMAN, Binghua Hu
  • Patent number: 11444075
    Abstract: An integrated circuit (IC) includes a semiconductor substrate in which a plurality of spaced-apart deep trench (DT) structures are formed. The IC further includes a plurality of DEEPN diffusion regions, each DEEPN diffusion region surrounding a corresponding one of the DT structures. Each of the DEEPN diffusion regions merges with at least one neighboring DEEPN diffusion region that surrounds at least one neighboring DT structure. The merged DEEPN diffusion regions may partially isolate two electronic devices, e.g. ESD devices.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: September 13, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann Edwards, Akram A. Salman, Binghua Hu
  • Patent number: 11374124
    Abstract: Described examples include integrated circuits, drain extended transistors and fabrication methods in which a silicide block material or other protection layer is formed on a field oxide structure above a drift region to protect the field oxide structure from damage during deglaze processing. Further described examples include a shallow trench isolation (STI) structure that laterally surrounds an active region of a semiconductor substrate, where the STI structure is laterally spaced from the oxide structure, and is formed under gate contacts of the transistor.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 28, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: James Robert Todd, Xiaoju Wu, Henry Litzmann Edwards, Binghua Hu
  • Publication number: 20220130717
    Abstract: A semiconductor device has a first trench and a second trench of a trench structure located in a substrate. The second trench is separated from the first trench by a trench space that is less than a first trench width of the first trench and less than a second trench width of the second trench. The trench structure includes a doped sheath having a first conductivity type, contacting and laterally surrounding the first trench and the second trench. The doped sheath extends from the top surface to an isolation layer and from the first trench to the second trench across the trench space. The semiconductor device includes a first region and a second region, both located in the semiconductor layer, having a second, opposite, conductivity type. The first region and the second region are separated by the first trench, the second trench, and the doped sheath.
    Type: Application
    Filed: October 24, 2020
    Publication date: April 28, 2022
    Applicant: Texas Instruments Incorporated
    Inventors: Binghua Hu, Ye Shao, John K Arch
  • Publication number: 20220077324
    Abstract: A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Inventors: Binghua Hu, Yanbiao Pan, Django Trombley
  • Patent number: 11222986
    Abstract: A semiconductor device includes an integrated trench capacitor in a substrate, with a field oxide layer on the substrate. The trench capacitor includes trenches extending into semiconductor material of the substrate, and a capacitor dielectric in the trenches on the semiconductor material. The trench capacitor further includes an electrically conductive trench-fill material on the capacitor dielectric. A portion of the capacitor dielectric extends into the field oxide layer, between a first segment of the field oxide layer over the trench-fill material and a second segment of the field oxide layer over the semiconductor material. The integrated trench capacitor has a trench contact to the trench-fill material in each of the trenches, and substrate contacts to the semiconductor material around the trenches, with no substrate contacts between the trenches.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: January 11, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Yanbiao Pan, Django Trombley
  • Patent number: 11195958
    Abstract: A semiconductor device with an isolation structure and a trench capacitor, each formed using a single resist mask for etching corresponding first and second trenches of different widths and different depths, with dielectric liners formed on the trench sidewalls and polysilicon filling the trenches and deep doped regions surrounding the trenches, including conductive features of a metallization structure that connect the polysilicon of the isolation structure trench to the deep doped region to form an isolation structure.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: December 7, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Alexei Sadovnikov, Abbas Ali, Yanbiao Pan, Stefan Herzer
  • Publication number: 20210351269
    Abstract: A semiconductor device has a deep trench in a semiconductor substrate of the semiconductor device, with linear trench segments extending to a trench intersection. Adjacent linear trench segments are connected by connector trench segments that surround a substrate pillar in the trench intersection. Each connector trench segment has a width at least as great as widths of the linear trench segments connected by the connector trench segment. The deep trench includes a trench filler material. The deep trench may have three linear trench segments extending to the trench intersection, connected by three connector trench segments, or may have four linear trench segments extending to the trench intersection, connected by four connector trench segments.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Binghua Hu, Ye Shao, John K Arch
  • Patent number: 11152505
    Abstract: Described examples include integrated circuits, drain extended transistors and fabrication methods in which an oxide structure is formed over a drift region of a semiconductor substrate, and a shallow implantation process is performed using a first mask that exposes the oxide structure and a first portion of the semiconductor substrate to form a first drift region portion for connection to a body implant region. A second drift region portion is implanted in the semiconductor substrate under the oxide structure by a second implantation process using the first mask at a higher implant energy.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Andrew Derek Strachan, Henry Litzmann Edwards, Dhanoop Varghese, Xiaoju Wu, Binghua Hu, James Robert Todd
  • Patent number: 11121207
    Abstract: A method for forming trench capacitors includes forming a silicon nitride layer over a first region of a semiconductor surface doped a first type and over a second region doped a second type. A patterned photoresist layer is directly formed on the silicon nitride layer. An etch forms a plurality of deep trenches (DTs) within the first region. A liner oxide is formed that lines the DTs. The silicon nitride layer is etched forming an opening through the silicon nitride layer that is at least as large in area as the area of an opening in the semiconductor surface of the DT below the silicon nitride layer. The liner oxide is removed, a dielectric layer(s) on a surface of the DTs is formed, a top plate material layer is deposited to fill the DTs, and the top plate material layer is removed beyond the DT to form a top plate.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: September 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Abbas Ali, Sopa Chevacharoenkul, Jarvis Benjamin Jacobs
  • Patent number: 11101342
    Abstract: A semiconductor device has a deep trench in a semiconductor substrate of the semiconductor device, with linear trench segments extending to a trench intersection. Adjacent linear trench segments are connected by connector trench segments that surround a substrate pillar in the trench intersection. Each connector trench segment has a width at least as great as widths of the linear trench segments connected by the connector trench segment. The deep trench includes a trench filler material. The deep trench may have three linear trench segments extending to the trench intersection, connected by three connector trench segments, or may have four linear trench segments extending to the trench intersection, connected by four connector trench segments.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: August 24, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Ye Shao, John K Arch
  • Publication number: 20210249505
    Abstract: A semiconductor device has a deep trench in a semiconductor substrate of the semiconductor device, with linear trench segments extending to a trench intersection. Adjacent linear trench segments are connected by connector trench segments that surround a substrate pillar in the trench intersection. Each connector trench segment has a width at least as great as widths of the linear trench segments connected by the connector trench segment. The deep trench includes a trench filler material. The deep trench may have three linear trench segments extending to the trench intersection, connected by three connector trench segments, or may have four linear trench segments extending to the trench intersection, connected by four connector trench segments.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 12, 2021
    Applicant: Texas Instruments Incorporated
    Inventors: Binghua Hu, Ye Shao, John K Arch