Patents by Inventor Bipin V. Vora

Bipin V. Vora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5300715
    Abstract: An improved process for the production of linear olefinic hydrocarbons by paraffin dehydrogenation and adsorptive separation is disclosed. Aromatic by-products normally formed in paraffin dehydrogenation are selectively removed using at least one aromatics removal zone. Removal of these aromatic by-products significantly increases the purity of the olefinic hydrocarbon product and increases the capacity of the adsorptive separation zone. The improved process is believed to increase the life of the adsorbent in the adsorptive separation zone and the life of the catalyst in the dehydrogenation zone.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: April 5, 1994
    Assignee: UOP
    Inventor: Bipin V. Vora
  • Patent number: 5283373
    Abstract: A combination of an etherification process and a process for the isomerization of linear alkenes to isoalkenes uses a separation zone that receives an effluent stream from the etherification reaction zone and separates it into a high boiling stream, a low boiling stream and an intermediate boiling stream in order to reduce the mass flow of reactants through the isomerization and etherification reaction zones. The separation zone includes at least one distillation column. The distillation column can provide a distillation function only, or can also provide a reactive distillation zone. The intermediate boiling stream leaves a two column separation zone as a bottoms stream from a second column or in a single column separation zone as a sidecut which in the case of reactive distillation is taken from the point above a bed of catalyst within the column.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: February 1, 1994
    Assignee: UOP
    Inventors: Charles P. Luebke, Bipin V. Vora, David A. Wegerer, Joseph E. Zimmermann
  • Patent number: 5210327
    Abstract: A combination of an etherification process and a process for the isomerization of linear alkenes to isoalkenes uses a separation zone that receives an effluent stream from the etherification reaction zone and separates it into a high boiling stream, a low boiling stream and an intermediate boiling stream in order to reduce the mass flow of reactants through the isomerization and etherification reaction zones. The separation zone normally has an arrangement of a distillation column. The distillation column can provide a distillation function only, or can also provide a reactive distillation zone. The intermediate boiling stream typically leaves the column as a sidecut which in the case of reactive distillation is taken from the point above a bed of catalyst within the column. Taking the sidecut stream substantially eliminates the circulation of isoalkane hydrocarbons through the etherification and isomerization zone and maintains normal alkanes at an acceptable equilibrium level.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: May 11, 1993
    Assignee: UOP
    Inventors: Charles P. Luebke, Bipin V. Vora, David A. Wegerer, Joseph E. Zimmermann, Kevin C. Buck
  • Patent number: 5057206
    Abstract: A white oil product is produced by hydrogenating a hydrocarbon stream produced from an aromatic alkylation process. The hydrogenation occurs at hydrogenation conditions in the presence of a catalyst comprising a platinum group metal component surface impregnated on a refractory oxide catalyst support. The platinum group metal component is surface impregnated such that the platinum group metal is essentially all located with a 100 micron layer of the surface of the catalyst support.
    Type: Grant
    Filed: August 25, 1988
    Date of Patent: October 15, 1991
    Assignee: UOP
    Inventors: Dusan J. Engel, Bipin V. Vora
  • Patent number: 5019662
    Abstract: A process for the production of hydrocarbon white oil by means of hydrogenating a heavy aromatic alkylate is disclosed. The process is characterized in that its feedstock is a previously undesired heavy hydrocarbon byproduct of aromatic alkylation. A white oil derived from such a process has good color and odor properties and results in a superior white oil lubricant.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: May 28, 1991
    Assignee: UOP
    Inventors: Bipin V. Vora, Dusan J. Engel
  • Patent number: 5015783
    Abstract: Processes for the production of ethers from alcohols and isoolefins are disclosed. Isoolefins having four to five carbon atoms per molecule are combined with a monohydroxy alcohol having from one to five carbon atoms per molecule and with a recycle stream comprising alcohol and water to form an etherification zone feed stream which is passed through an etherification zone to produce the desired ether. The effluent from the etherification zone is separated into an ether product and an aqueous product containing unreacted alcohol which is recycled to provide a portion of the etherification zone feed stream. Distillation can be employed to separate the effluent from the etherification zone into a bottoms product stream, comprising the ether, a distillate product comprising other hydrocarbons and the above-mentioned recycle stream. When producing ethyl-tertiary-butyl ether (ETBE), azeotropic grade ethanol, i.e., about 5 vol. % water, is preferably utilized.
    Type: Grant
    Filed: December 4, 1989
    Date of Patent: May 14, 1991
    Assignee: UOP
    Inventors: Bipin V. Vora, Peter R. Pujado, Charles P. Luebke
  • Patent number: 5012021
    Abstract: An improved process for the production of alkylaromatic hydrocarbons is disclosed. Paraffinic hydrocarbons are dehydrogenated to yield an olefin-containing stream, which is later charged to an alkylation zone for reaction with an aromatic hydrocarbon in the presence of a solid alkylation catalyst. The olefin-containing stream is first passed through a selective hydrogenation zone in which diolefins are converted to monoolefins by contact with a selective catalyst. This increases the yield and the quality of the product alkylate by greatly reducing the production of biphenyl compounds and oligomers in the alkylation zone. Process efficiency is improved by passing unconverted paraffinic and monoolefinic hydrocarbons from the alkylation zone through another hydrogenation zone for the saturation of monoolefinic hydrocarbons and recycling the saturated stream to the dehydrogenation zone.
    Type: Grant
    Filed: September 18, 1990
    Date of Patent: April 30, 1991
    Assignee: UOP
    Inventors: Bipin V. Vora, Paul R. Cottrell
  • Patent number: 5008467
    Abstract: An integrated process of producing MTBE by the dehydrogenation of isobutane and the etherification of the resulting isobutene with methanol is simplified by directly charging the effluent of a dehydrogenation zone without prior separation to an etherification zone arranged to provide countercurrent contact of isobutene and the methanol reactants such that an MTBE product is recovered as a bottoms stream and a relatively isobutene-free overhead stream is recycled to the dehydrogenation zone. Overall separation facilities are simplified by only separating C.sub.3 hydrocarbons from the etherification zone product stream. This arrangement eliminates C.sub.3 separation facilities ahead of the etherification zone and reduces the quantity of C.sub.4 hydrocarbons that are received by the separation zone. The reaction zone may contain a series of beds arranged to further eliminate the carry over of isobutene to the separation facilities. This arrangement also allows a recovery of unreactive or unreacted C.sub.
    Type: Grant
    Filed: December 4, 1989
    Date of Patent: April 16, 1991
    Assignee: UOP
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4906788
    Abstract: A combined process for the dehydrogenation of C.sub.4 -C.sub.5 paraffins in a first zone and the etherification of olefins in a second zone improves efficiency by directly charging all but the lightest components of the dehydrogenation zone effluent to the etherification zone. This process is particularly suited for the production of gasoline boiling range ethers where an isoparaffin is dehydrogenated in a first zone to produce isoolefins. After separation of hydrogen and methane, the dehydrogenation zone effluent is charged along with methanol to an etherification zone for the production of MTBE. The etherification zone effluent is separated into at least three component streams comprising light ends, isoparaffins, and the ether product. Isoparaffins, separated from the etherification zone effluent, are recycled and combined with the feed to dehydrogenation zone.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: March 6, 1990
    Assignee: UOP
    Inventors: Norman H. Scott, Bipin V. Vora
  • Patent number: 4902848
    Abstract: A process for the dehydrogenation of a dehydrogenatable hydrocarbon feedstock having small quantities of higher boiling range hydrocarbons which comprises: (a) introducing the dehydrogenatable hydrocarbon feedstock into a fractionation zone having at least a portion of reflux to a fractionation column supplied by the dehydrogenatable hydrocarbon feedstock to provide a dehydrogenatable hydrocarbon stream having a reduced concentration of higher boiling range hydrocarbons and a stream comprising the higher boiling range hydrocarbons; (b) introducing the dehydrogenatable hydrocarbon stream having a reduced concentration of higher boiling range hydrocarbon recovered in step (a) into a dehydrogenation zone containing dehydrogenation catalyst and operated at dehydrogenation conditions to provide a hydrocarbon stream comprising dehydrogenated hydrocarbons and unconverted dehydrogenatable hydrocarbons; (c) separating the hydrocarbon stream comprising dehydrogenated hydrocarbons and unconverted dehydrogenatable hydroc
    Type: Grant
    Filed: July 1, 1988
    Date of Patent: February 20, 1990
    Assignee: UOP
    Inventors: Norman H. Scott, Bipin V. Vora
  • Patent number: 4869808
    Abstract: A continuous process for hydrocarbon conversion wherein a hydrocarbon charge stock is catlytically converted in the presence of hydrogen at hydrocarbon conversion conditions including a first inlet temperature, a first hydrogen to hydrocarbon mole ratio and a first mass flow rate of hydrocarbon into a hydrocarbon product stream in a high space velocity moving bed radial flow reactor containing catalyst wherein at least a portion of the catalyst is pinned and thereby immobilized during high space velocity conversion which process comprises: (a) reducing the first inlet temperature of the reactor by about 10.degree. F. (5.5.degree. C.) to about 100.degree. F. (55.5.degree. C.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: September 26, 1989
    Assignee: UOP
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4816607
    Abstract: A multistep hydrocarbon conversion process for the production of ethers including methyl tertiary butyl ether (MTBE) from light paraffins and alcohols is disclosed. A mixture of C.sub.4 isoparaffins, normal paraffins, an etherification recycle and butane isomerization effluent enter a deisobutanizer column. Normal paraffins withdrawn from the fractionator are isomerized and returned to the fractionator, and isoparaffins are withdrawn from the fractionator and dehydrogenated. The resulting olefins enter an etherification zone for reaction of isobutene with a C.sub.2 -C.sub.5 alcohol. Unreacted paraffins and olefins comprise a portion of the etherification effluent entering the deisobutanizer. After separation for recovery of the ether product, unreacted paraffins and olefins are passed through a dehydrogenation zone for saturation of the olefins and then returned to the deisobutanizer column. Normal butanes are withdrawn as a sidecut from the deisobutanizer.
    Type: Grant
    Filed: June 24, 1988
    Date of Patent: March 28, 1989
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Peter R. Pujado, Richard E. Conser
  • Patent number: 4806695
    Abstract: A combined process for the dehydrogenation of C.sub.3 -C.sub.5 paraffins in a first zone and the conversion of olefins in a second zone improves efficiency by directly charging all but the lightest components of the dehydrogenation zone effluent to the olefin conversion zone. This process is particularly suited for the production of gasoline boiling range ethers where an isoparaffin is dehydrogenated in a first zone to produce isoolefins. After separation of hydrogen and methane, the dehydrogenation zone effluent is charged along with a C.sub.1 -C.sub.5 alcohol to an etherification zone for the production of ether. The etherification zone effluent is separated into at least two component streams one comprising light ends, isoparaffins, and oxygenates and the other comprising an ether product. After passage through an alcohol recovery zone, the isoparaffins are separated from the other lighter recycled material and combined with the feed to dehydrogenation zone.
    Type: Grant
    Filed: October 30, 1987
    Date of Patent: February 21, 1989
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4778942
    Abstract: A process for the dehydrogenation of a dehydrogenatable hydrocarbon feedstock having small quantities of higher boiling range hydrocarbons which comprises: (a) introducing the dehydrogenatable hydrocarbon feedstock into a fractionation zone having at least a portion of reflux to a fractionation column supplied by a hereinafter-described recycle stream to provide a dehydrogenatable hydrocarbon stream having a reduced concentration of higher boiling range hydrocarbons and a stream comprising the higher boiling range hydrocarbons; (b) introducing the dehydrogenatable hydrocarbon stream having a reduced concentration of higher boiling range hydrocarbon recovered in step (a) into a dehydrogenation zone containing dehydrogenation catalyst and operated at dehydrogenation conditions to provide a hydrocarbon stream comprising dehydrogenated hydrocarbons and unconverted dehydrogenatable hydrocarbons; (c) separating the hydrocarbon stream comprising dehydrogenated hydrocarbons and unconverted dehydrogenatable hydrocarbo
    Type: Grant
    Filed: March 14, 1988
    Date of Patent: October 18, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4761509
    Abstract: An improved process for the catalytic dehydrogenation of paraffinic hydrocarbons is disclosed. Feed paraffinic hydrocarbons are dehydrogenated to yield an olefin containing vapor stream which is partially condensed to produce a liquid phase process stream which contains byproduct diolefins along with the intended product monoolefins. The liquid phase process stream in admixture with hydrogen and a sulfur compound is passed through a selective hydrogenation zone in which diolefins are catalytically converted to monoolefins. This selective hydrogenation in the presence of trace quantities of a sulfur compound increases the quality of the product monoolefin stream. The selective hydrogenation zone is located between the vapor-liquid separator and the stripper column of the dehydrogenation zone.
    Type: Grant
    Filed: February 24, 1987
    Date of Patent: August 2, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Daniel L. Ellig
  • Patent number: 4754078
    Abstract: A multistep hydrocarbon conversion process for the production of ethers including methyl tertiary butyl ether (MTBE) from light paraffins and alcohols is disclosed. A mixture of C.sub.4 isoparaffins, normal paraffins, an etherification recycle and butane isomerization effluent enter a deisobutanizer column. Normal paraffins withdrawn from the fractionator are isomerized and returned to the fractionator, and isoparaffins are withdrawn from the fractionator and dehyrogenated. The resulting olefins enter an etherification zone for reaction of isobutene with a C.sub.2 -C.sub.5 alcohol. Unreacted paraffins and olefins comprise the etherification effluent entering the deisobutanizer. Normal butanes and olefins are withdrawn as a sidecut from the deisobutanizer. Hydrogenation of the sidecut saturates any olefins contained therein which would interfere with the isomerization of normal butanes.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: June 28, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Peter R. Pujado, Richard E. Conser
  • Patent number: 4720336
    Abstract: A catalytic reactor system for effecting the contact of a reactant stream with catalyst particles that are movable by gravity flow through the system, which comprises in combination: (a) a vertically elongated confined reaction chamber; (b) a catalyst loading chamber having a fixed volume located outside of and generally overhead of the reaction chamber whereby fresh catalyst particles gravitationally flow downward into the chamber; (c) concentrically spaced apart wall members which provide an annular-form catalyst-retaining section that is spaced inwardly from the wall of the reaction chamber to additionally provide a manifold space around the section and a cylindrical center pipe volume, the wall members having a perforate screen lower end and an imperforate upper end wherein the imperforate upper end defines a portion of the annular-form catalyst-retaining section having a volume of greater than about 100% of the catalyst loading chamber; (d) an imperforate cover means over the annular-form catalyst-retain
    Type: Grant
    Filed: September 10, 1986
    Date of Patent: January 19, 1988
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4695662
    Abstract: A process is disclosed for the catalytic dehydrogenation of propane or butanes. The vapor phase reaction zone effluent stream is contacted with a heavy absorption liquid and then with a light absorption liquid. The light absorption liquid is composed of hydrocarbons recovered from the reaction zone effluent stream. This secondary contacting removes components of the heavy absorption liquid from the recycle gas, thus eliminating the deleterious effects of these compounds on the dehydrogenation catalyst. The heavy absorption liquid may be produced within the process by a catalytic olefin-consuming reaction zone.
    Type: Grant
    Filed: April 4, 1986
    Date of Patent: September 22, 1987
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4663493
    Abstract: A process for dehydrogenating dehydrogenatable hydrocarbons is disclosed in which a heat providing stream is utilized to supply a portion of the endothermic heat requirement of the reaction zone feed thereby decreasing the temperature drop of the dehydrogenation zone material. As a result, the amount of deleterious side reactions such as thermal cracking is reduced, and an increase in conversion of the dehydrogenatable hydrocarbons is realized.
    Type: Grant
    Filed: June 12, 1985
    Date of Patent: May 5, 1987
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Roy C. Berg, Norman H. Scott
  • Patent number: 4575567
    Abstract: An improved method is disclosed for regenerating adsorbents used in an integrated process for the production of ethers such as methyl tertiary butyl ether by the reaction of an alcohol with an isoolefin. The sorbents are used to remove oxygenated compounds such as the product ether and the feed alcohol from a hydrocarbon-rich stream withdrawn from the etherification zone. The regeneration procedure includes contacting the sorbent with a heated hydrocarbon stream. The resultant contaminated hydrocarbon stream is passed into a stripping column used to remove light ends from the effluent of a dehydrogenation zone in which the isoolefin fed to the etherification zone is produced. The oxygenated compounds collected on the sorbent are thus selectively recycled or rejected rather than being destroyed or lost in low purity effluent streams.
    Type: Grant
    Filed: August 2, 1984
    Date of Patent: March 11, 1986
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora