Patents by Inventor Birgit Schwenzer

Birgit Schwenzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9929429
    Abstract: Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 27, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Jie Xiao, Gregory J. Exarhos, Birgit Schwenzer, Zimin Nie
  • Publication number: 20140042422
    Abstract: A light-emitting device, which improves the light output of organic light emitting diodes (OLEDs), includes at least one porous metal or metalloid oxide light extraction layer positioned between the substrate and the transparent conducting material layer in the OLED. The index of refraction of the light extraction layer and the light scattering may be tuned by changing the pore size, pore density, doping the metal oxide, adding an insulating, conducting or semiconducting component, or filling the pores, for example. A method for forming the light-emitting device includes forming at least one light extraction layer comprising a porous metal or metalloid oxide on a substrate, for example, using atmospheric pressure chemical vapor deposition (APCVD), and subsequently, forming a transparent conducting material on the light extraction layer.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 13, 2014
    Applicants: Battelle Memorial Institute, Arkema Inc.
    Inventors: Gary S. Silverman, Roman K. Korotkov, Ryan C. Smith, Jun Liu, Daniel J. Gaspar, Asanga B. Padmaperuma, Liang Wang, Birgit Schwenzer, James S. Swensen
  • Patent number: 8568686
    Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
  • Publication number: 20130040197
    Abstract: Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
    Type: Application
    Filed: July 30, 2012
    Publication date: February 14, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Jie Xiao, Gregory J. Exarhos, Birgit Schwenzer, Zimin Nie
  • Publication number: 20070254141
    Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
    Type: Application
    Filed: April 18, 2007
    Publication date: November 1, 2007
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Morse, Birgit Schwenzer, John Gomm, Kristian Roth, Brandon Heiken, Richard Brutchey