Patents by Inventor Blake Waters Axelrod

Blake Waters Axelrod has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8857275
    Abstract: An apparatus, system, device, and method provide the ability to measure forces a cell exerts on its surroundings. A platform is suspended across an opening using support legs. The platform is able to move horizontally in a plane of the opening. A piezoresistive strain sensor is integrated into the platform and measures strain induced in the support legs when the platform moves horizontally thereby measuring displacement of the platform.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: October 14, 2014
    Assignee: California Institute of Technology
    Inventors: Blake Waters Axelrod, Paula Popescu, Michael L. Roukes
  • Patent number: 8827548
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 9, 2014
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Publication number: 20130133439
    Abstract: An apparatus, system, device, and method provide the ability to measure forces a cell exerts on its surroundings. A platform is suspended across an opening using support legs. The platform is able to move horizontally in a plane of the opening. A piezoresistive strain sensor is integrated into the platform and measures strain induced in the support legs when the platform moves horizontally thereby measuring displacement of the platform.
    Type: Application
    Filed: May 1, 2012
    Publication date: May 30, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Blake Waters Axelrod, Paula Popescu, Michael L. Roukes
  • Publication number: 20110216804
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 8, 2011
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Patent number: 7966898
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 28, 2011
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Publication number: 20100024572
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 4, 2010
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: MICHAEL L. ROUKES, CHUNG-WAH FON, WONHEE LEE, HONGXING TANG, BLAKE WATERS AXELROD, JOHN LIANG TAN