Patents by Inventor Blayne A. Roeder

Blayne A. Roeder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11033294
    Abstract: A method of treatment for a body vessel is provided. The body vessel includes a dissection flap formed from a wall of the body vessel, which longitudinally separates a natural body vessel lumen into a true lumen and a false lumen. One or more cuts are formed in the dissection flap with a cutting device or system. An expandable device is inserted within the true lumen, and expanded to reappose the dissection flap against the wall of the body vessel where the dissection flap was detached from the wall such that the false lumen is closed. A variety of cut patterns are disclosed.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 15, 2021
    Assignee: Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Joshua F. Krieger, Jarin A. Kratzberg, Matthew J. Phillips, Zachary Berwick, Ghassan Kassab
  • Patent number: 11020257
    Abstract: A pre-loaded stent graft delivery device and stent graft, the stent graft delivery device. The stent graft has at least one fenestration or side arm and the fenestration is preloaded with an indwelling guide wire. Indwelling access sheaths are provided within auxiliary lumens of a pusher catheter and dilators are preloaded into the access sheaths along with the indwelling guide wire. The auxiliary lumens have an oblong cross-section. A handle assembly at a distal end of the guide wire catheter. The handle includes a multiport manifold with access ports to the auxiliary lumens in the pusher catheter. Upon deployment of the stent graft, the indwelling guide wire can be used to facilitate catheterization of a side branch or target vessel through the fenestration or be used to stabilize the access sheath during catheterization, advancement of the access sheath into the target vessel and deployment of a stent therein.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: June 1, 2021
    Assignees: Cook Medical Technologies LLC, University of Massachusetts Medical School
    Inventors: Blayne A. Roeder, Andres Schanzer
  • Patent number: 10993823
    Abstract: The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 4, 2021
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Tony C. Hopkins, Siddharth Vad, Michael P. DeBruyne, Zachary Wagner, Blayne A. Roeder, William J. Havel, Jarin Kratzberg, Rick Hadley
  • Patent number: 10959826
    Abstract: A support structure for a three-sided scallop in the edge of a stent graft including two substantially longitudinal perimeter support sections and an undulating lateral side base extending between the two support sections. The undulations extend below the edge of the lateral side of the scallop and overlap the graft material away from the edge of the lateral side.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 30, 2021
    Assignee: Cook Medical Technology LLC
    Inventors: Davorin K. Skender, Blayne A. Roeder
  • Patent number: 10925711
    Abstract: The present embodiments describe a multi-component endograft having a first endograft with first and second wall openings, a second endograft with a third wall opening, a third endograft with a fourth wall opening, where during an adjustment state the second and third endografts are independently adjustable, both vertically along a longitudinal axis and rotationally relative to the longitudinal axis, (1) while keeping the perimeter of the third wall opening primarily encompassed by the perimeter of the first wall opening and (2) while keeping the perimeter of the fourth wall opening primarily encompassed by the perimeter of the second wall opening.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: February 23, 2021
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventor: Blayne A. Roeder
  • Patent number: 10905575
    Abstract: A deployment device for deploying an expandable endoluminal prosthesis within a body vessel may include an elongate member extending longitudinally along at least a portion of a length of the deployment device. The deployment device may include at least one engagement member coupled to the elongate member and extending outwardly from the elongate member. The deployment device may include a circumferential trigger wire extending at least partially circumferentially around the elongate member and removably received between the engagement member and the elongate member. The circumferential trigger wire may be manipulatable from a distal end of the deployment device, whereby the circumferential trigger wire is removable from between the engagement member and the elongate member.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 2, 2021
    Assignee: Cook Medical Technologies LLC
    Inventor: Blayne A. Roeder
  • Publication number: 20210015643
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Blayne A. Roeder, Jarin A. Kratzberg, Erik E. Rasmussen
  • Patent number: 10842618
    Abstract: The present embodiments provide a prosthesis comprising first and second segments, and an axially extendable segment coupled to the first and second segments. A valve is coupled to at least one of the axially extendable segment or the second segment. The axially extendable segment comprises a first state in which the valve at least partially overlaps with the first segment, and the axially extendable segment comprises a second state in which the valve lacks an overlap with the first segment.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: November 24, 2020
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventor: Blayne A. Roeder
  • Publication number: 20200352703
    Abstract: A branched and fenestrated prosthesis may include a main tubular graft body including a proximal end opening, a distal end opening, a lumen, and a sidewall. A branch may extend from the sidewall and may include a first end opening, a second end opening, and a lumen. A fenestration may be disposed in the sidewall and positioned distal of the second end opening of the branch. The branched and fenestrated prosthesis may include a plurality of branches and a plurality of fenestrations.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Applicants: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: Roy K. Greenberg, Karl J. West, Timothy A. Resch, Blayne A. Roeder
  • Patent number: 10828183
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: November 10, 2020
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Blayne A. Roeder, Jarin A. Kratzberg, Erik E. Rasmussen
  • Patent number: 10821012
    Abstract: Devices for delivering and deploying an endoluminal prosthesis are disclosed and comprise a delivery catheter, an endoluminal prosthesis disposed at a distal end portion of the delivery catheter, and a wire. The prosthesis comprises a tubular graft having at least one fenestration. The wire extends distally from a first wire end through an axial lumen of the delivery catheter and the prosthesis, and through the fenestration in the graft. The wire extends proximally through a lumen of the prosthesis and through an axial lumen of the delivery catheter towards a second wire end. Additional devices, systems, and methods are disclosed.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: November 3, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Matthew S. Huser, Blayne A. Roeder
  • Patent number: 10806563
    Abstract: A system may include an endoluminal prosthesis and a guide wire. The prosthesis may include a tubular body including a graft material wall, a proximal end opening, a distal end opening, and a lumen extending longitudinally therein. The prosthesis may include first and second fenestrations in the graft material wall. The first and second fenestrations may be spaced from one another circumferentially about the tubular body. The guide wire may have a first end and a second end both extending from a region proximal of the proximal end opening. The guide wire may enter the proximal end opening, exit the first fenestration, partially traverse an exterior surface of the prosthesis, enter the second fenestration, and exit the proximal end opening. One or more of the fenestrations may include a branch.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: October 20, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Matthew S. Huser, Kelly Coverdale
  • Publication number: 20200323632
    Abstract: The present embodiments provide a medical device for implantation in a patient comprising a stent and a valve. The stent comprises a proximal region comprising a cylindrical shape having a first outer diameter in an expanded state, and a distal region comprising a cylindrical shape having a second outer diameter in the expanded state. The second outer diameter is greater than the first outer diameter. A proximal region of the valve is at least partially positioned within the proximal region of the stent, and the distal region of the valve is at least partially positioned within one of tapered and distal regions of the stent. When implanted, the proximal region of the stent and the proximal region of the valve are aligned with a native valve, and the distal region of the valve is distally spaced-apart from the native valve.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: Cook Medical Technologies LLC
    Inventors: Timothy A. Chuter, Blayne A. Roeder, Sharath Gopalakrishnamurthy, Alan R. Leewood
  • Publication number: 20200323631
    Abstract: The present embodiments provide a medical device for implantation in a patient comprising a stent and a valve. The stent comprises a proximal region comprising a cylindrical shape having a first outer diameter in an expanded state, and a distal region comprising a cylindrical shape having a second outer diameter in the expanded state. The second outer diameter is greater than the first outer diameter. A proximal region of the valve is at least partially positioned within the proximal region of the stent, and the distal region of the valve is at least partially positioned within one of tapered and distal regions of the stent. When implanted, the proximal region of the stent and the proximal region of the valve are aligned with a native valve, and the distal region of the valve is distally spaced-apart from the native valve.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: Cook Medical Technologies LLC
    Inventors: Timothy A. Chuter, Blayne A. Roeder, Sharath Gopalakrishnamurthy, Alan R. Leewood
  • Patent number: 10779930
    Abstract: An endoluminal prosthesis may include a tubular main graft body including a sidewall and proximal and distal ends. A first stent may be positioned near the proximal end of the main graft body. A second stent may be positioned adjacent to and distal of the first stent. An opening in the sidewall may be positioned longitudinally between a peak of the first stent and a valley of the second stent. A tubular branch may be disposed in the opening. The branch may include first and second end openings. The branch may be flexibly orientable between a retrograde configuration in which the first end opening is oriented toward the distal end and the second end opening is oriented toward the proximal end and an antegrade configuration in which the first end opening is oriented toward the proximal end and the second end opening is oriented toward the distal end.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 22, 2020
    Assignees: The Cleveland Clinic Foundation, Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Roy K. Greenberg, Jarin Kratzberg, Matthew S. Huser
  • Patent number: 10772751
    Abstract: The present embodiments provide an endoluminal prosthesis deployment system and method for deploying the prosthesis for cannulation of branch vessels. The prosthesis includes an anterior fenestration and a posterior opening. A guide is disposed to exit the prosthesis lumen through a lateral fenestration, enter through the anterior fenestration, and exit the prosthesis lumen through the posterior opening. A sheath can be preloaded over the branch wire at the lateral fenestration for vessel cannulation, such as in renal arteries. The sheath can include another branch wire that extends from the lateral fenestration to another lateral fenestration. An end of the guide is retracted after partial expansion of the prosthesis, and another sheath is inserted over the retracted guide and moved through the posterior opening and to the anterior fenestration. A separate branch guide wire is then directed through the sheath for vessel cannulation, such as the SMA.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 15, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Brandon J. Davis, Jarin A. Kratzberg, Blayne A. Roeder
  • Patent number: 10772719
    Abstract: A method of making a contoured internal limb including providing a flattened tubular segment of graft material, and a prosthesis including the contoured internal limb. The tubular segment includes a left lateral edge, a right lateral edge, a first length extending from the left lateral edge to the right lateral edge, and a second length extending from a proximal end to a distal end of the tubular segment. The method also includes contouring a proximal portion, a middle portion, and a distal portion of the contoured internal limb from the tubular segment. The method also includes closing a right lateral edge of the proximal portion and a right lateral edge of a first section of the middle portion. The method further includes removing the proximal, middle and distal portions of the contoured internal limb from the tubular segment and maintaining a second section of the middle portion as circumferentially continuous.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 15, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Elizabeth A. Eaton, Allen E. Hacker, Blayne A. Roeder
  • Publication number: 20200281749
    Abstract: A stent graft having an internal bidirectional branch formed from a tubular segment of graft material. The internal bidirectional branch extends within the lumen of the stent graft and proximally and distally from a lateral opening in the sidewall of the stent graft. The tubular segment from which the stent graft is made is partitioned into first and second sections along a length of the tubular segment to form the internal bidirectional branch. The lateral opening has a length and a width that may be greater than the diameter of the internal bidirectional branch and may be in the shape of a quadrilateral. The internal bidirectional branch and the stent graft are formed from a single piece of graft material.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Applicant: Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Chantelle King, Nuno Dias, Marcelo Ferreira
  • Patent number: 10758387
    Abstract: A pre-loaded delivery device that facilitates accurate placement of a stent graft assembly in the aorta is disclosed. A stent graft is carried on the delivery device and held in a pre-deployment configuration by a sheath. A split in the sheath facilitates the pre-cannulation of one or more branch arteries extending from the aorta before the stent graft is fully released in the aorta. The stent graft comprises a tubular body having at least one scalloped fenestration formed in one end of the graft material and at least one fenestration formed in the graft material of the main tubular body. A helical internal side branch extends from the fenestration within the lumen of the main tubular body. The helical side branch is configured to curve at least partially around the scalloped fenestration. The assembly further comprises a connection stent graft extending from the fenestration into a branch vessel.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: September 1, 2020
    Assignees: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: Blayne A. Roeder, Roy K. Greenberg, Stephan Haulon
  • Patent number: 10729531
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 4, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois