Patents by Inventor BO-HENG LIU

BO-HENG LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200173984
    Abstract: A conveying pipeline including a bionic tube, a delivery tube, and a shrinkable tube is provided. A portion of the delivery tube is located in the bionic tube, so that the bionic tube has an overlapping region with the delivery tube. The shrinkable tube wraps the bionic tube located in the overlapping region.
    Type: Application
    Filed: May 20, 2019
    Publication date: June 4, 2020
    Applicant: National Tsing Hua University
    Inventors: Fan-Gang Tseng, Jye-Sheng Chen, Jyun-Wei Chen, Bo-Heng Liu
  • Patent number: 9901917
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: February 27, 2018
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20160256863
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Patent number: 9404181
    Abstract: A plasma enhanced atomic layer deposition (PEALD) system used to form thin films on substrates includes a plasma chamber, a processing chamber, two or more ring units and a control piece. The plasma chamber includes an outer and an inner quartz tubular units, whose central axes are aligned with each other. Therefore, plasma is held and concentrated in an annular space formed between the outer and outer quartz tubular units. Due to the first and second through holes, the plasma flow may be more evenly distributed on most of the surface of the substrate to form evenly distributed thin films and nano particles on the substrate. In addition, due to the alignment and misalignment between the first and second through holes, the plasma generated in the plasma chamber may be swiftly allowed or disallowed to enter to the processing chamber to prevent the precursor from forming a CVD.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: August 2, 2016
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Bo-Heng Liu, Chi-Chung Kei, Meng-Yen Tsai, Wen-Hao Cho, Chih-Chieh Yu, Chien-Nan Hsiao, Da-Ren Liu
  • Patent number: 9381509
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: July 5, 2016
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20130125815
    Abstract: A plasma enhanced atomic layer deposition (PEALD) system used to form thin films on substrates includes a plasma chamber, a processing chamber, two or more ring units and a control piece. The plasma chamber includes an outer and an inner quartz tubular units, whose central axes are aligned with each other. Therefore, plasma is held and concentrated in a cylindrical space formed between the outer and outer quartz tubular units. Due to the first and second through holes, the plasma flow may be more evenly distributed on most of the surface of the substrate to form evenly distributed thin films and nano particles on the substrate. In addition, due to the alignment and misalignment between the first and second through holes, the plasma generated in the plasma chamber may be swiftly allowed or disallowed to enter to the processing chamber to prevent the precursor from forming a CVD.
    Type: Application
    Filed: March 6, 2012
    Publication date: May 23, 2013
    Inventors: Bo-Heng Liu, Chi-Chung Kei, Meng-Yen Tsai, Wen-Hao Cho, Chih-Chieh Yu, Chien-Nan Hsiao, Da-Ren Liu
  • Publication number: 20130045374
    Abstract: The present invention discloses a nano-laminated film with transparent conductive property and water-vapor resistance function and method thereof. The nano-laminated film comprises a plurality of first metal oxide layers and a plurality of second metal oxide layers. Wherein, the first metal layers and the second metal layers are made of different materials, and there is a spinel phase formed between the first metal layers and the second metal layers.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 21, 2013
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: CHIH-CHIEH YU, MENG-YEN TSAI, CHI-CHUNG KEI, BO-HENG LIU, CHIEN-NAN HSIAO