Patents by Inventor BODHISATWA SADHU

BODHISATWA SADHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10171031
    Abstract: An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Anandaroop Chakrabarti, Mark Ferriss, Bodhisatwa Sadhu
  • Publication number: 20180375472
    Abstract: A voltage controlled oscillator (VCO), a method of designing a voltage controlled oscillator, and a design structure comprising a semiconductor substrate including a voltage controlled oscillator are disclosed. In one embodiment, the VCO comprises an LC tank circuit for generating an oscillator output at an oscillator frequency, and an oscillator core including cross-coupled semiconductor devices to provide feedback to the tank circuit. The VCO further comprises a supply node, a tail node, and a noise by-pass circuit connected to the supply and tail nodes, in parallel with the tank circuit and the oscillator core. The by-pass circuit forms a low-impedance path at a frequency approximately twice the oscillator frequency to at least partially immunize the oscillator core from external noise and to reduce noise contribution from the cross-coupled semiconductor devices.
    Type: Application
    Filed: August 1, 2018
    Publication date: December 27, 2018
    Inventors: Alberto Valdes-Garcia, Bodhisatwa Sadhu
  • Patent number: 10153727
    Abstract: An oscillator includes a first output node and a second output node. There is a tank circuit coupled between the first output node and the second output node. There is a first transistor having a first node, a second node coupled to a current source, and a control node coupled to the second output node. There is a second transistor having a first node, a second node coupled to the current source, and a control node coupled to the first output node. There is a first inductor coupled in series between the first node of the first transistor and the first output node. There is a second inductor coupled in series between the first node of the second transistor and the second output node.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: December 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tejasvi Anand, Mark A. Ferriss, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Publication number: 20180212580
    Abstract: Variable gain amplifiers and methods of designing the same include a first amplifying transistor configured to receive a first input signal and to provide a first amplified output signal based on the first input signal. A phase compensating resistor is connected to the first amplifying transistor and has a resistance calibrated as: R e = ? b C be , par where ?b is the base transit time of the first amplifying transistor and Cbe,par is the gain-independent part of the base-emitter capacitance of the first amplifying transistor.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 26, 2018
    Inventors: John F. Bulzacchelli, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Patent number: 10008995
    Abstract: Variable gain amplifiers and methods of designing the same include a first amplifying transistor configured to receive a first input signal and to provide a first amplified output signal based on the first input signal. A phase compensating resistor is connected to the first amplifying transistor and has a resistance that compensates for a phase dependence of the first amplifying transistor, such that an output phase of the amplified output signal is dependent only on a phase of the input signal and is independent of an amplification of the first amplifying transistor.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: John F. Bulzacchelli, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Patent number: 10009202
    Abstract: An apparatus for decoding a data modulated signal includes a signal receiver that receives a data modulated signal that is encoded with phase-shift keying (PSK) and provides an amplified signal corresponding to the data modulated signal, a tunable phase shifter that receives a local reference signal and a selected phase shift, applies the selected phase shift to the local reference signal to produce a phase shifted reference signal, a summing unit that sums the amplified signal and the phase shifted reference signal to produce a summed signal, an amplitude detector that determines an amplitude of the summed signal, and a symbol detector that varies the selected phase shift and determines a current symbol within the data modulated signal based on the amplitude of the summed signal as the selected phase shift is varied. A corresponding method is also disclosed herein.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes Garcia, Wayne H. Woods, Jr., Bodhisatwa Sadhu
  • Patent number: 9998073
    Abstract: A voltage controlled oscillator comprises a negative resistance, a first inductor, a fixed capacitor, and a frequency control component. The frequency control component comprises at least one varactor and at least a second inductor connected in series with the at least one varactor. A magnitude of an inductance of the second inductor is selected such that the frequency control component has an effective capacitance range larger than a capacitance range of the at least one varactor.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Mark A. Ferriss, Daniel J. Friedman, Bodhisatwa Sadhu, Alberto Valdes-Garcia
  • Publication number: 20180115065
    Abstract: An apparatus for calibrating a multi-antenna system includes an unmanned aerial vehicle (UAV). The UAV includes one or more millimeter-wave (mm-wave) single channel radios that can transmit and receive a mm-wave signal to or from a multi-antenna system under test; at least one directional antenna connected to the one or more radios; sensors that determine a position of the UAV; an omni-directional mobile or Wi-Fi transceiver that communicates with an operator; and a digital microprocessor unit connected to the one or more mm-wave single channel radios, the sensors, and the omni-directional mobile or Wi-Fi transceiver. The digital microprocessor unit can control motion of the UAV and analyze signals received from the one or more mm-wave single channel radios and the at least one directional antenna using position information received from the sensors.
    Type: Application
    Filed: October 26, 2016
    Publication date: April 26, 2018
    Inventors: ALBERTO VALDES GARCIA, BODHISATWA SADHU, YAHY MESGARPOUR TOUSI
  • Patent number: 9954486
    Abstract: An apparatus comprises a digitally controlled circuit having a variable capacitance and a controller configured to adjust a magnitude of the variable capacitance of the digitally controlled circuit. The digitally controlled circuit comprises a plurality of gain elements, the plurality of gain elements comprising one or more positive voltage-to-frequency gain elements and one or more negative voltage-to-frequency gain elements. The controller is configured to adjust the magnitude of the capacitance by adjusting the gain provided by respective ones of the gain elements in an alternating sequence of the positive voltage-to-frequency gain elements and the negative voltage-to-frequency gain elements.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: April 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Mark A. Ferriss, Daniel J. Friedman, Alexander V. Rylyakov, Bodhisatwa Sadhu, Alberto Valdes-Garcia
  • Publication number: 20180108995
    Abstract: A millimeter-wave (MMW) communication system may include an antenna array structure operating within a MMW band, having both a first antenna coupling point and a second antenna coupling point, whereby the first and the second location of the antenna coupling points are within a coplanar surface on which the antenna array structure is formed. The system may further include a first MMW transmitter that couples a first data modulated MMW signal to the first antenna coupling point and a second MMW transmitter that couples a second data modulated MMW signal to the second antenna coupling point. Coupling the first data modulated MMW signal to the first antenna coupling point generates a first MMW radio signal transmitted at a first propagation direction and coupling the second data modulated MMW signal to the second antenna coupling point generates a second MMW radio signal transmitted at a second propagation direction.
    Type: Application
    Filed: November 17, 2017
    Publication date: April 19, 2018
    Inventors: Xiaoxiong Gu, Duixian Liu, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Publication number: 20180109226
    Abstract: A voltage controlled oscillator (VCO), a method of designing a voltage controlled oscillator, and a design structure comprising a semiconductor substrate including a voltage controlled oscillator are disclosed. In one embodiment, the VCO comprises an LC tank circuit for generating an oscillator output at an oscillator frequency, and an oscillator core including cross-coupled semiconductor devices to provide feedback to the tank circuit. The VCO further comprises a supply node, a tail node, and a noise by-pass circuit connected to the supply and tail nodes, in parallel with the tank circuit and the oscillator core. The by-pass circuit forms a low-impedance path at a frequency approximately twice the oscillator frequency to at least partially immunize the oscillator core from external noise and to reduce noise contribution from the cross-coupled semiconductor devices.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 19, 2018
    Inventors: Alberto Valdes-Garcia, Bodhisatwa Sadhu
  • Patent number: 9948236
    Abstract: A method includes forming a resonator comprising a plurality of switched impedances spatially distributed within the resonator, selecting a resonant frequency for the resonator, and distributing two or more transconductance elements within the resonator based on the selected resonant frequency. Distributing the two or more transconductance elements may include non-uniformly distributing the two or more transconductance elements within the resonator.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Mark A. Ferriss, Daniel J. Friedman, Alexander V. Rylyakov, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Patent number: 9948235
    Abstract: A method includes forming a resonator comprising a plurality of switched impedances spatially distributed within the resonator, selecting a resonant frequency for the resonator, and distributing two or more transconductance elements within the resonator based on the selected resonant frequency. Distributing the two or more transconductance elements may include non-uniformly distributing the two or more transconductance elements within the resonator.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Mark A. Ferriss, Daniel J. Friedman, Alexander V. Rylyakov, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Patent number: 9917548
    Abstract: A voltage controlled oscillator (VCO), a method of designing a voltage controlled oscillator, and a design structure comprising a semiconductor substrate including a voltage controlled oscillator are disclosed. In one embodiment, the VCO comprises an LC tank circuit for generating an oscillator output at an oscillator frequency, and an oscillator core including cross-coupled semiconductor devices to provide feedback to the tank circuit. The VCO further comprises a supply node, a tail node, and a noise by-pass circuit connected to the supply and tail nodes, in parallel with the tank circuit and the oscillator core. The by-pass circuit forms a low-impedance path at a frequency approximately twice the oscillator frequency to at least partially immunize the oscillator core from external noise and to reduce noise contribution from the cross-coupled semiconductor devices.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes-Garcia, Bodhisatwa Sadhu
  • Patent number: 9917659
    Abstract: Transmit/receive switches and methods for radio control include connecting a first reactive impedance in parallel with a power amplifier on a transmit path during reception to neutralize a reactive impedance of the power amplifier and to prevent received signals from entering the transmit path. The first reactive impedance is disconnected during transmission.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes Garcia, Scott K. Reynolds, Bodhisatwa Sadhu, Yahya Mesgarpour Tousi
  • Publication number: 20180069309
    Abstract: A method and system of a configurable phased array transceiver are provided. A first beamforming unit is configured to provide a first beam. A second beamforming unit is configured to provide a second beam. A first bi-directional power controller is configured to combine or to split the first beam and the second beam. Each beamforming unit comprises a plurality of radio frequency (RF) front-ends, each front-end being configured to transmit and receive RF signals. Each beam is independently configurable to operate in a transmit (TX) or a receive (RX) mode.
    Type: Application
    Filed: May 16, 2017
    Publication date: March 8, 2018
    Inventors: Daniel J. Friedman, Joakim Hallin, Yahya Mesgarpour Tousi, Örjan Renström, Leonard Rexberg, Scott K. Reynolds, Bodhisatwa Sadhu, Stefan Sahl, Jan-Erik Thillberg, Alberto Valdes Garcia
  • Patent number: 9912061
    Abstract: A millimeter-wave (MMW) communication system may include an antenna array structure operating within a MMW band, having both a first antenna coupling point and a second antenna coupling point, whereby the first and the second location of the antenna coupling points are within a coplanar surface on which the antenna array structure is formed. The system may further include a first MMW transmitter that couples a first data modulated MMW signal to the first antenna coupling point and a second MMW transmitter that couples a second data modulated MMW signal to the second antenna coupling point. Coupling the first data modulated MMW signal to the first antenna coupling point generates a first MMW radio signal transmitted at a first propagation direction and coupling the second data modulated MMW signal to the second antenna coupling point generates a second MMW radio signal transmitted at a second propagation direction.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiaoxiong Gu, Duixian Liu, Bodhisatwa Sadhu, Alberto Valdes Garcia
  • Publication number: 20180048264
    Abstract: A switched capacitor is provided. The switched capacitor includes a pair of parallel component stacks. Each stack is connected to a common top node and a common bottom node. Each stack includes a BJT. Each stack further includes a first resistor in series with the BJT and having a first side connected to a collector of the BJT at an intermediate node in a same one of the stacks and a second side connected to the common top node. Each stack also includes a capacitor having a first side connected to the intermediate node and a second side for providing an impedance. Each stack additionally includes a second resistor having a first side connected to a base of the BJT to prevent base-current surge in the BJT and a second side connected to a switch base control signal that selectively turns the BJT on or off.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 15, 2018
    Inventors: Alberto Valdes Garcia, Bodhisatwa Sadhu, Jahnavi Sharma
  • Patent number: 9837959
    Abstract: An apparatus comprises a digitally controlled circuit having a variable capacitance and a controller configured to adjust a magnitude of the variable capacitance of the digitally controlled circuit. The digitally controlled circuit comprises a plurality of gain elements, the plurality of gain elements comprising one or more positive voltage-to-frequency gain elements and one or more negative voltage-to-frequency gain elements. The controller is configured to adjust the magnitude of the capacitance by adjusting the gain provided by respective ones of the gain elements in an alternating sequence of the positive voltage-to-frequency gain elements and the negative voltage-to-frequency gain elements.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: December 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Mark A. Ferriss, Daniel J. Friedman, Alexander V. Rylyakov, Bodhisatwa Sadhu, Alberto Valdes-Garcia
  • Patent number: 9831830
    Abstract: A switched capacitor is provided. The switched capacitor includes a pair of parallel component stacks. Each stack is connected to a common top node and a common bottom node. Each stack includes a BJT. Each stack further includes a first resistor in series with the BJT and having a first side connected to a collector of the BJT at an intermediate node in a same one of the stacks and a second side connected to the common top node. Each stack also includes a capacitor having a first side connected to the intermediate node and a second side for providing an impedance. Each stack additionally includes a second resistor having a first side connected to a base of the BJT to prevent base-current surge in the BJT and a second side connected to a switch base control signal that selectively turns the BJT on or off.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: November 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes Garcia, Bodhisatwa Sadhu, Jahnavi Sharma