Patents by Inventor Bojan Mitrovic

Bojan Mitrovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9273395
    Abstract: An MOCVD reactor such as a rotating disc reactor (10) is equipped with a gas injector head having diffusers (129) disposed between adjacent gas inlets. The diffusers taper in the downstream direction. The injector head desirably has inlets (117) for a first gas such as a metal alkyl disposed in radial rows which terminate radially inward from the reactor wall to minimize deposition of the reactants on the reactor wall. The injector head desirably also has inlets (125) for a second gas such as ammonia arranged in a field between the rows of first gas inlets, and additionally has a center inlet (135) for the second gas coaxial with the axis of rotation.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: March 1, 2016
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Alex Gurary, Eric A. Armour
  • Publication number: 20150225875
    Abstract: In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Inventors: Bojan Mitrovic, Alexander I. Gurary, William E. Quinn, Eric A. Armour
  • Patent number: 9053935
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: June 9, 2015
    Assignee: Veeco Instruments Inc.
    Inventors: Alexander I. Gurary, Mikhail Belousov, Bojan Mitrovic
  • Patent number: 8980000
    Abstract: In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: March 17, 2015
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Alex Gurary, William Quinn, Eric A. Armour
  • Publication number: 20150056790
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Alexander I. Gurary, Mikhail Belousov, Bojan Mitrovic
  • Patent number: 8937000
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: January 20, 2015
    Assignee: Veeco Instruments Inc.
    Inventors: Alex Gurary, Mikhail Belousov, Bojan Mitrovic
  • Publication number: 20140360430
    Abstract: A wafer carrier assembly for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition (CVD), the wafer carrier assembly includes a wafer carrier body formed symmetrically about a central axis, and including a generally planar top surface that is situated perpendicularly to the central axis and a planar bottom surface that is parallel to the top surface. At least one wafer retention pocket is recessed in the wafer carrier body from the top surface. Each of the at least one wafer retention pocket includes a floor surface and a peripheral wall surface that surrounds the floor surface and defines a periphery of that wafer retention pocket. At least one thermal control feature includes an interior cavity or void formed in the wafer carrier body and is defined by interior surfaces of the wafer carrier body.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 11, 2014
    Inventors: Eric Armour, Sandeep Krishnan, Alex Zhang, Bojan Mitrovic, Alexander Gurary
  • Publication number: 20140352619
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into a rotating-disc reactor and directed downwardly onto a wafer carrier and substrates which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-250° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Alexander I. Gurary, Mikhail Belousov, Bojan Mitrovic
  • Patent number: 8895107
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into a rotating-disc reactor and directed downwardly onto a wafer carrier and substrates which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-250° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 25, 2014
    Assignee: Veeco Instruments Inc.
    Inventors: Alex Gurary, Mikhail Belousov, Bojan Mitrovic
  • Patent number: 8888919
    Abstract: A wafer carrier includes a body defining a central axis, a generally planar top surface perpendicular to the central axis, and pockets recessed below the top surface for receiving wafers. The body can include a lip projecting upwardly around the periphery of the top surface. The lip can define a lip surface sloping upwardly from the planar top surface in a radially outward direction away from the central axis. The body can be adapted for mounting on a spindle of a processing apparatus so that the central axis of the body is coaxial with the spindle. The lip can improve the pattern of gas flow over the top surface of the wafer carrier.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 18, 2014
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Joshua Mangum, William E. Quinn
  • Publication number: 20140116330
    Abstract: A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Mikhail Belousov, Bojan Mitrovic, Keng Moy
  • Patent number: 8636847
    Abstract: A flow inlet element (22) for a chemical vapor deposition reactor (10) is formed from a plurality of elongated tubular elements (64, 65) extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier (14) rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane (108) extending through the axis.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 28, 2014
    Assignee: Veeco Instruments Inc.
    Inventors: Mikhail Belousov, Bojan Mitrovic, Keng Moy
  • Publication number: 20120325151
    Abstract: A flow inlet element (22) for a chemical vapor deposition reactor (10) is formed from a plurality of elongated tubular elements (64, 65) extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier (14) rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane (108) extending through the axis.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Mikhail Belousov, Bojan Mitrovic, Keng Moy
  • Patent number: 8303713
    Abstract: A flow inlet element (22) for a chemical vapor deposition reactor (10) is formed from a plurality of elongated tubular elements (64, 65) extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier (14) rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane (108) extending through the axis.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 6, 2012
    Assignee: Veeco Instruments Inc.
    Inventors: Mikhail Belousov, Bojan Mitrovic, Keng Moy
  • Patent number: 8287646
    Abstract: An MOCVD reactor such as a rotating disc reactor (10) is equipped with a gas injector head having diffusers (129) disposed between adjacent gas inlets. The diffusers taper in the downstream direction. The injector head desirably has inlets (117) for a first gas such as a metal alkyl disposed in radial rows which terminate radially inward from the reactor wall to minimize deposition of the reactants on the reactor wall. The injector head desirably also has inlets (125) for a second gas such as ammonia arranged in a field between the rows of first gas inlets, and additionally has a center inlet (135) for the second gas coaxial with the axis of rotation.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 16, 2012
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Alex Gurary, Eric A. Armour
  • Publication number: 20120171870
    Abstract: Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
    Type: Application
    Filed: December 21, 2011
    Publication date: July 5, 2012
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Bojan Mitrovic, Guanghua Wei, Eric A. Armour, Ajit Paranjpe
  • Patent number: 8152923
    Abstract: An MOCVD reactor such as a rotating disc reactor (10) is equipped with a gas injector head having diffusers (129) disposed between adjacent gas inlets. The diffusers taper in the downstream direction. The injector head desirably has inlets (117) for a first gas such as a metal alkyl disposed in radial rows which terminate radially inward from the reactor wall to minimize deposition of the reactants on the reactor wall. The injector head desirably also has inlets (125) for a second gas such as ammonia arranged in a field between the rows of first gas inlets, and additionally has a center inlet (135) for the second gas coaxial with the axis of rotation.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: April 10, 2012
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Alex Gurary, Eric A. Armour
  • Publication number: 20120040514
    Abstract: A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
    Type: Application
    Filed: November 6, 2009
    Publication date: February 16, 2012
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Alex Gurary, Mikhail Belousov, Bojan Mitrovic
  • Publication number: 20110215071
    Abstract: A wafer carrier includes a body defining a central axis, a generally planar top surface perpendicular to the central axis, and pockets recessed below the top surface for receiving wafers. The body can include a lip projecting upwardly around the periphery of the top surface. The lip can define a lip surface sloping upwardly from the planar top surface in a radially outward direction away from the central axis. The body can be adapted for mounting on a spindle of a processing apparatus so that the central axis of the body is coaxial with the spindle. The lip can improve the pattern of gas flow over the top surface of the wafer carrier.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 8, 2011
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Bojan Mitrovic, Joshua Mangum, William E. Quinn
  • Publication number: 20110206843
    Abstract: Wafer treatment process and apparatus is provided with a wafer carrier arranged to hold wafers and to inject a fill gas into gaps between the wafers and the wafer carrier. The apparatus is arranged to vary the composition, flow rate, or both of the fill gas so as to counteract undesired patterns of temperature non-uniformity of the wafers.
    Type: Application
    Filed: December 14, 2010
    Publication date: August 25, 2011
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Alex Gurary, Mikhail Belousov, Vadim Boguslavskiy, Bojan Mitrovic