Patents by Inventor Bok Hoen Kim

Bok Hoen Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458537
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 4, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20160260602
    Abstract: Embodiments generally relate to methods of controlling hydrogen content in a silicon oxide/amorphous silicon stack. By precleaning the substrate of residues, controlling the delivery of hydrogen during the stack deposition and preventing outgassing of hydrogen from deposited layers during subsequent layer deposition and processing, the effects of delamination can be avoided in the formation of devices, such as 3D NAND devices.
    Type: Application
    Filed: October 15, 2014
    Publication date: September 8, 2016
    Inventors: Subbalakshmi SREEKALA, Nagarajan RAJAGOPALAN, Bok Hoen KIM
  • Publication number: 20160203971
    Abstract: Embodiments of the disclosure provide methods and system for manufacturing film layers with minimum lithographic overlay errors on a semiconductor substrate. In one embodiment, a method for forming a film layer on a substrate includes supplying a deposition gas mixture including a silicon containing gas and a reacting gas onto a substrate disposed on a substrate support in a processing chamber, forming a plasma in the presence of the depositing gas mixture in the processing chamber, applying current to a plasma profile modulator disposed in the processing chamber while supplying the depositing gas mixture into the processing chamber, and rotating the substrate while depositing a film layer on the substrate.
    Type: Application
    Filed: October 8, 2015
    Publication date: July 14, 2016
    Inventors: Michael TSIANG, Praket P. JHA, Xinhai HAN, Nagarajan RAJAGOPALAN, Bok Hoen KIM, Tsutomu KIYOHARA, Subbalakshmi SREEKALA
  • Patent number: 9390910
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 12, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Publication number: 20160133443
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 12, 2016
    Inventors: Kwangduk Douglas LEE, Sudha RATHI, Ramprakash SANKARAKRISHNAN, Martin Jay SEAMONS, Irfan JAMIL, Bok Hoen KIM
  • Patent number: 9337051
    Abstract: Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Bok Hoen Kim, Deenesh Padhi, Li Yan Miao, Pramit Manna, Christopher Dennis Bencher, Mehul B. Naik, Huixiong Dai, Christopher S. Ngai, Daniel Lee Diehl
  • Patent number: 9337072
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Y. Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Amir Al-Bayati, Derek R. Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Publication number: 20160099147
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: November 20, 2014
    Publication date: April 7, 2016
    Inventors: Prashant Kumar KULSHRESHTHA, Sudha RATHI, Praket P. JHA, Saptarshi BASU, Kwangduk Douglas LEE, Martin J. SEAMONS, Bok Hoen KIM, Ganesh BALASUBRAMANIAN, Ziqing DUAN, Lei JING, Mandar B. PANDIT
  • Patent number: 9299581
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Ramprakash Sankarakrishnan, Martin Jay Seamons, Irfan Jamil, Bok Hoen Kim
  • Publication number: 20160086794
    Abstract: Embodiments described herein generally relate to the fabrication of integrated circuits and more particularly to nitrogen doped amorphous carbon layers and processes for depositing nitrogen doped amorphous carbon layers on a semiconductor substrate. In one embodiment, a method of forming a nitrogen doped amorphous carbon layer on a substrate is provided. The method comprises positioning a substrate in a substrate processing chamber, introducing a nitrogen containing hydrocarbon source into the processing chamber, introducing a hydrocarbon source into the processing chamber, introducing a plasma-initiating gas into the processing chamber, generating a plasma in the processing chamber, and forming a nitrogen doped amorphous carbon layer on the substrate.
    Type: Application
    Filed: June 18, 2013
    Publication date: March 24, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Siu F. CHENG, Jacob JANZEN, Deenesh PADHI, Bok Hoen KIM
  • Publication number: 20160064209
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Kwangduk Douglas LEE, Sudha RATHI, Ramprakash SANKARAKRISHNAN, Martin Jay SEAMONS, Irfan JAMIL, Bok Hoen KIM
  • Publication number: 20160064264
    Abstract: Techniques are disclosed for methods and apparatuses for increasing the breakdown voltage while substantially reducing the voltage leakage of an electrostatic chuck at temperatures exceeding about 300 degrees Celsius in a processing chamber.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 3, 2016
    Inventors: Prashant KULSHRESHTHA, Kwangduk Douglas LEE, Bok Hoen KIM, Zheng John YE, Swayambhu Prasad BEHERA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA-ALVAREZ, Jian J. CHEN
  • Publication number: 20160049323
    Abstract: Embodiments of the present disclosure provide an electrostatic chuck for maintaining a flatness of a substrate being processed in a plasma reactor at high temperatures. In one embodiment, the electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, and the chuck body has a volume resistivity value of about 1×107 ohm-cm to about 1×1015 ohm-cm in a temperature of about 250° C. to about 700° C., and an electrode embedded in the body, the electrode is coupled to a power supply. In one example, the chuck body is composed of an aluminum nitride material which has been observed to be able to optimize chucking performance around 600° C. or above during a deposition or etch process, or any other process that employ both high operating temperature and substrate clamping features.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: Zheng John YE, Jay D. PINSON, II, Hiroji HANAWA, Jianhua ZHOU, Xing LIN, Ren-Guan DUAN, Kwangduk Douglas LEE, Bok Hoen KIM, Swayambhu P. BEHERA, Sungwon HA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA- ALVAREZ, Prashant Kumar KULSHRESHTHA, Jason K. FOSTER, Mukund SRINIVASAN, Uwe P. HALLER, Hari K. PONNEKANTI
  • Publication number: 20160049305
    Abstract: Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 18, 2016
    Inventors: Bencherki MEBARKI, Bok Hoen KIM, Deenesh PADHI, Li Yan MIAO, Pramit MANNA, Christopher Dennis BENCHER, Mehul B. NAIK, Huixiong DAI, Christopher S. NGAI, Daniel Lee DIEHL
  • Publication number: 20160017497
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: NAGARAJAN RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20160017487
    Abstract: A method of processing a substrate includes positioning the substrate within a processing zone of a processing chamber and removing an oxide layer from a surface of the substrate by introducing first radicals into the processing zone. The method further includes, after removing the oxide layer, introducing at least one first precursor gas into the processing zone and depositing at least one dielectric layer onto the surface by exposing the at least one first precursor gas to second radicals. After positioning the substrate within the processing zone, the substrate is not removed from the processing chamber until each of removing the oxide layer and depositing the at least one dielectric layer is performed.
    Type: Application
    Filed: August 28, 2014
    Publication date: January 21, 2016
    Inventors: Yihong CHEN, Shaunak MUKHERJEE, Martin Jay SEAMONS, Kelvin CHAN, Abhijit Basu MALLICK, Bok Hoen KIM, Jianhua ZHOU
  • Publication number: 20160005596
    Abstract: Embodiments of the invention relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer with a predetermined thickness over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, wherein a volumetric flow rate of hydrocarbon source: plasma-initiating gas: dilution gas is in a ratio of 1:0.5:20, generating a plasma at a deposition temperature of about 300 C to about 500 C to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate, and removing the patterned features.
    Type: Application
    Filed: February 14, 2014
    Publication date: January 7, 2016
    Inventors: Swayambhu P. BEHERA, Shahid SHAIKH, Pramit MANNA, Mandar B. PANDIT, Tersem SUMMAN, Patrick REILLY, Deenesh PADHI, Bok Hoen KIM, Heung Lak PARK, Derek R. WITTY
  • Patent number: 9157730
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Patent number: 9157151
    Abstract: The present invention generally provides an apparatus and method for eliminating the “first wafer effect” for plasma enhanced chemical vapor deposition (PECVD). One embodiment of the present invention provides a method for preparing a chamber after the chamber being idle for a period of time. The method comprises a cleaning step followed by a season step and a heating step adapted to the length of the idle time.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ganesh Balasubramanian, Francimar Schmitt, Bok Hoen Kim
  • Publication number: 20150279676
    Abstract: A method of forming a nitrogen-doped amorphous carbon layer on a substrate in a processing chamber is provided. The method generally includes depositing a predetermined thickness of a sacrificial dielectric layer over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, depositing conformally a predetermined thickness of a nitrogen-doped amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the nitrogen-doped amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate using an anisotropic etching process to provide the patterned features filled within sidewall spacers formed from the nitrogen-doped amorphous carbon layer, and removing the patterned features from the substrate.
    Type: Application
    Filed: June 11, 2015
    Publication date: October 1, 2015
    Inventors: Sungjin KIM, Deenesh PADHI, Sung Hyun HONG, Bok Hoen KIM, Derek R. WITTY