Patents by Inventor Boris S. Jacobson

Boris S. Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190296582
    Abstract: A multi-cell inductive wireless power transfer system includes multiple transmitting elements. Each transmitting element includes one or more transmitting windings and one or more transmitting magnetic cores. The multi-cell inductive wireless power transfer system also includes multiple receiving elements. The transmitting elements are separated from the receiving elements by an air gap. Each receiving element includes one or more receiving windings and one or more receiving magnetic cores.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Boris S. Jacobson, Sara L. Makowiec, Mark S. Langelier, Michael F. Janik, George E. Anderson
  • Publication number: 20190207529
    Abstract: A power converter includes an outer housing formed of dielectric material and including a low voltage compartment and a high voltage compartment is disclosed. The power converter also includes a low voltage DC-to-AC converter disposed in the low voltage compartment, a first coil in the low voltage compartment, a first conductive shield element lining an outer wall of the low voltage compartment, the first conductive shield element being electrically coupled to an electrical input of the DC-to-AC converter and a second conductive shield element lining an outer wall of the high voltage compartment.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Boris S. Jacobson, Evgeny N. Holmansky, Lev Volfson
  • Patent number: 10340812
    Abstract: A modular high-power converter system includes an electronic power distribution unit configured to output an analog current (AC) voltage to a power bus, and at least one Transmit or Receive Integrated Microwave Module (T/RIMM) that includes a voltage converter unit and a transmitter and receiver (T/R) unit. The voltage converter unit includes at least one analog-to-digital converter (ADC) to convert the AC voltage into a direct current (DC) voltage having a first DC voltage level. The transmitter and receiver (T/R) unit includes a modular-based DC/DC converter to convert the DC voltage into a second DC voltage having a second voltage. The modular-based DC/DC converter includes a modular power converter unit configured to generate the second DC voltage. The modular converter unit is configured to be independently interchangeable with a different modular converter unit.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: July 2, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Boris S. Jacobson, Steven D. Bernstein, Steven M. Lardizabal, Jason Adams, Jeffrey R. Laroche
  • Publication number: 20190149039
    Abstract: A power converter assembly is provided and includes high quality factor (Q) shield-to-transistor integrated low-inductance capacitor elements to divert common mode (CM) currents, high Q shield-to-shield integrated low-inductance capacitor elements to compliment line-to-line filter capacitors and high Q baseplate integrated low-inductance capacitor elements to attenuate residual CM currents.
    Type: Application
    Filed: August 6, 2018
    Publication date: May 16, 2019
    Inventors: Boris S. Jacobson, Steven D. Bernstein, Steven M. Lardizabal, Jason Adams, Jeffrey R. Laroche
  • Patent number: 10270356
    Abstract: A power converter includes an outer housing formed of dielectric material and including a low voltage compartment and a high voltage compartment is disclosed. The power converter also includes a low voltage DC-to-AC converter disposed in the low voltage compartment, a first coil in the low voltage compartment, a first conductive shield element lining an outer wall of the low voltage compartment, the first conductive shield element being electrically coupled to an electrical input of the DC-to-AC converter and a second conductive shield element lining an outer wall of the high voltage compartment.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: April 23, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Boris S. Jacobson, Evgeny N. Holmansky, Lev Volfson
  • Publication number: 20190081567
    Abstract: A modular high-power converter system includes an electronic power distribution unit configured to output an analog current (AC) voltage to a power bus, and at least one Transmit or Receive Integrated Microwave Module (T/RIMM) that includes a voltage converter unit and a transmitter and receiver (T/R) unit. The voltage converter unit includes at least one analog-to-digital converter (ADC) to convert the AC voltage into a direct current (DC) voltage having a first DC voltage level. The transmitter and receiver (T/R) unit includes a modular-based DC/DC converter to convert the DC voltage into a second DC voltage having a second voltage. The modular-based DC/DC converter includes a modular power converter unit configured to generate the second DC voltage. The modular converter unit is configured to be independently interchangeable with a different modular converter unit.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Boris S. Jacobson, Steven D. Bernstein, Steven M. Lardizabal, Jason Adams, Jeffrey R. Laroche
  • Publication number: 20190044340
    Abstract: An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 7, 2019
    Inventors: Boris S. Jacobson, David H. Altman, Charles P. Scheffler, Regan A. Zane
  • Publication number: 20180366974
    Abstract: An electrical circuit and a method for regulating current and providing a circuit breaker to the electrical circuit. The circuit includes a bidirectional cell including a set of forward switches for power flow during a forward mode of operation and a set of reverse switches for providing reverse power flow during a reverse mode of operation, a control inductor for controlling current flow during the reverse mode of operation, and a voltage clamping switch configured to provide the control inductor in the circuit during the reverse mode of operation and remove the control inductor from the circuit during the forward mode of operation. The circuit is operated in at least the reverse mode of operation.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventor: Boris S. Jacobson
  • Patent number: 10120402
    Abstract: A system includes at least one pair of series adaptive clamps (SACs). Each SAC is configured to connect to a single conductor that is configured to conduct a constant current between shore-side power sources on opposite ends of the single conductor. Each SAC is configured to clamp a specified amount of power from the single conductor. Each SAC is configured to connect to one end of two ends of a power transfer bus, wherein the other end of the power transfer bus is connected to another SAC of a same pair of SACs. Each SAC is configured to provide a constant voltage to the power transfer bus at the constant current in order to supply at least some of the specified amount of power to a load connected to the power transfer bus.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: November 6, 2018
    Assignee: Raytheon Company
    Inventors: Mark S. Langelier, Boris S. Jacobson, George E. Anderson, Michael F. Janik
  • Publication number: 20180309285
    Abstract: A crowbar circuit includes a first inductor coupled to a positive terminal of a power supply at a first terminal, and at a second terminal coupled in series with a main thyristor having a main gate drive for limiting a discharge current through main thyristor; a resistor coupled to the main thyristor at a first terminal and to the negative terminal at a second terminal; an auxiliary thyristor having an auxiliary gate drive coupled in series with a first capacitor at a first terminal and an auxiliary inductor at a second terminal, the auxiliary inductor coupled between the first terminal of the resistor and the first capacitor; a first diode couple between the first terminal of the resistor and the first terminal of the auxiliary thyristor; and a second diode coupled between the positive terminal and the negative terminal.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Inventor: Boris S. Jacobson
  • Publication number: 20180294715
    Abstract: A regulated current-fed power system employs power branching units connected in series. Each power branching unit includes a plurality of parallel-redundant converter groups connected in series with each other within a current path for the regulated current. Each parallel-redundant converter group includes at least two direct current (DC)/DC converters connected in parallel with each other, each sharing the power load. A protection device connected in series with each DC/DC converter disconnects the respective DC/DC converter from the regulated current when the respective DC/DC converter short circuits, with the remaining DC/DC converter(s) then receiving more of the power load. An active clamp connected in parallel with all of the DC/DC converters within a parallel-redundant converter group temporarily sinks a portion of the regulated current when one of the DC/DC converters fails in a short-circuit condition.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Boris S. Jacobson, John C. Cochran, Jason D. Adams, Mark S. Langelier
  • Patent number: 10049810
    Abstract: A transformer includes a core having a central arm and first and second outer arms on opposite sides of the of the central arm, a first input winding surrounding the central arm and a first output winding surrounding the central arm. The transformer also includes a first input winding shield surrounding the first input winding, the first input winding shield having only flat or arcuate edges in cross section and a first output winding shield surrounding the first output winding, the first output winding shield having only flat or arcuate edges in cross section.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: August 14, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Boris S. Jacobson
  • Patent number: 10050533
    Abstract: A transformer includes: a core having a central arm and first and second outer arms on opposite sides of the of the central arm; a primary winding surrounding the central arm; a secondary winding surrounding the central arm; a primary winding shield surrounding the primary winding including a center tap connection connected to an output power connection; and a secondary winding shield surrounding the secondary winding including a center tap connection connected to an output power connection is disclosed. The transformer also includes a DC-to-AC converter connected to the primary winding that includes a primary bias power supply, a primary conversion element and a primary controller, an AC-to-DC converter connected to the secondary winding, a sensor connected to an output of the AC-to-DC converter and a secondary bias power supply that receives power from the secondary winding shield.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 14, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Boris S. Jacobson
  • Patent number: 10050438
    Abstract: An antenna-based modular power system includes a prime power supply configured to generate a first alternating current (AC) power signal having a first AC voltage level. At least one transformer is configured to convert the first AC signal into a second AC signal having a second AC voltage level less than the first AC voltage level. At least one Transmit or Receive Integrated Microwave Module (T/RIMM) dual power converter antenna array is in signal communication with the at least one transformer. The at least one T/RIMM dual power converter antenna array includes at least one load, and an AC/DC converter is embedded therein to convert the second AC signal into a DC power drive signal to energize the at least one load.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 14, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Boris S. Jacobson
  • Patent number: 9997997
    Abstract: A regulated current-fed power system employs power branching units connected in series. Each power branching unit includes a plurality of parallel-redundant converter groups connected in series with each other within a current path for the regulated current. Each parallel-redundant converter group includes at least two direct current (DC)/DC converters connected in parallel with each other, each sharing the power load. A protection device connected in series with each DC/DC converter disconnects the respective DC/DC converter from the regulated current when the respective DC/DC converter short circuits, with the remaining DC/DC converter(s) then receiving more of the power load. An active clamp connected in parallel with all of the DC/DC converters within a parallel-redundant converter group temporarily sinks a portion of the regulated current when one of the DC/DC converters fails in a short-circuit condition.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 12, 2018
    Assignee: Raytheon Company
    Inventors: Boris S. Jacobson, John C. Cochran, Jason D. Adams, Mark S. Langelier
  • Publication number: 20180048244
    Abstract: A power converter includes an outer housing formed of dielectric material and including a low voltage compartment and a high voltage compartment is disclosed. The power converter also includes a low voltage DC-to-AC converter disposed in the low voltage compartment, a first coil in the low voltage compartment, a first conductive shield element lining an outer wall of the low voltage compartment, the first conductive shield element being electrically coupled to an electrical input of the DC-to-AC converter and a second conductive shield element lining an outer wall of the high voltage compartment.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Boris S. Jacobson, Evgeny N. Holmansky, Lev Volfson
  • Publication number: 20180034372
    Abstract: A transformer includes: a core having a central arm and first and second outer arms on opposite sides of the of the central arm; a primary winding surrounding the central arm; a secondary winding surrounding the central arm; a primary winding shield surrounding the primary winding including a center tap connection connected to an output power connection; and a secondary winding shield surrounding the secondary winding including a center tap connection connected to an output power connection is disclosed. The transformer also includes a DC-to-AC converter connected to the primary winding that includes a primary bias power supply, a primary conversion element and a primary controller, an AC-to-DC converter connected to the secondary winding, a sensor connected to an output of the AC-to-DC converter and a secondary bias power supply that receives power from the secondary winding shield.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 1, 2018
    Inventor: Boris S. Jacobson
  • Publication number: 20170357281
    Abstract: A system includes at least one pair of series adaptive clamps (SACs). Each SAC is configured to connect to a single conductor that is configured to conduct a constant current between shore-side power sources on opposite ends of the single conductor. Each SAC is configured to clamp a specified amount of power from the single conductor. Each SAC is configured to connect to one end of two ends of a power transfer bus, wherein the other end of the power transfer bus is connected to another SAC of a same pair of SACs. Each SAC is configured to provide a constant voltage to the power transfer bus at the constant current in order to supply at least some of the specified amount of power to a load connected to the power transfer bus.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 14, 2017
    Inventors: Mark S. Langelier, Boris S. Jacobson, George E. Anderson, Michael F. Janik
  • Patent number: 9806513
    Abstract: A solid-state zero current switching circuit breaker is configured to interrupt current flow between a voltage input and a load. The solid-state zero current switching circuit breaker includes at least one resonant capacitor cell having an input configured to receive a source voltage and an output configured to deliver drive current to the load. The resonant capacitor cell is configured to selectively limit the drive current to the output based on a variable voltage. The solid-state zero current switching circuit breaker further includes at least one voltage clamping switch configured to detect a short-circuit fault or an overload condition. The voltage clamping switch adjusts the variable voltage in response to detecting the short-circuit fault condition or the overload condition such that the resonant capacitor cell limits the drive current.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 31, 2017
    Assignee: RAYTHEON COMPANY
    Inventor: Boris S. Jacobson
  • Patent number: 9730366
    Abstract: An electromagnetic interference (EMI) suppressing shield is disclosed. The EMI suppressing shield can include a plurality of shield portions electrically coupled to a positive electric potential polarity or a negative electric potential polarity. At least some of the plurality of shield portions can be electrically isolated from one another. At least one of the plurality of shield portions can be electrically coupled to the positive electric potential and at least one of the plurality of shield portions can be electrically coupled to the negative electric potential.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: August 8, 2017
    Assignee: Raytheon Company
    Inventors: Boris S. Jacobson, Stephen R. Elkins, Bradley S. Jaworski