Patents by Inventor Bradley S. Oraw

Bradley S. Oraw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11490495
    Abstract: An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 1, 2022
    Assignee: NthDegree Technologies Worldwide, Inc.
    Inventors: Rodger Whitby, Bradley S. Oraw
  • Publication number: 20210321504
    Abstract: An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
    Type: Application
    Filed: May 27, 2020
    Publication date: October 14, 2021
    Inventors: Rodger Whitby, Bradley S. Oraw
  • Patent number: 10497672
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 3, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Publication number: 20180114775
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 26, 2018
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Patent number: 9661716
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: May 23, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Patent number: 9572222
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 14, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Publication number: 20170018049
    Abstract: On a flexible substrate is printed, LEDs, a battery, a flasher, and an actuator. The actuator may be a photo-switch that causes the battery and flasher to periodically energize the LEDs when a sufficient ambient light impinges on the actuator. The substrate may be an insert in a transparent package containing a product, such as a razor. When the package is in the front of a display in a store, the ambient light causes the LEDs to flash, such as every 10-30 seconds to attract consumers to the product. The substrate may also form part of the outer surface of the package. The flasher may simply flash the LEDs or create a dynamic display by energizing different groups of the LEDs at different times.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 19, 2017
    Inventors: Alexander S. Ray, Richard A. Blanchard, Bradley S. Oraw, Shawn Barber, Mark D. Lowenthal, William J. Ray, Neil O. Shotton, David Moffenbeier, Vera N. Lockett
  • Patent number: 9368549
    Abstract: Over a flexible substrate are formed column lines for a display. Over the substrate and column lines are formed a reflective hydrophobic mesh defining pixels. Over the mesh and column lines is printed an LED ink containing microscopic LED dies. The LED ink de-wets from the mesh. The ink is then cured to electrically connect the bottom electrodes of the LEDs to the column lines within the openings (cells) of the mesh. A dielectric then encapsulates the LEDs while exposing the top electrodes of the LEDs. Transparent row lines are then formed along the rows of the mesh to electrically contact the top electrodes in each row. The LEDs within any cell can be turned on by address in a pair of row and column lines. Phosphor dots may be printed to over blue-emitting LEDs to create red, green, and blue sub-pixels for a full color display.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: June 14, 2016
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Bradley S. Oraw, Brian D. Ogonowsky
  • Publication number: 20160154170
    Abstract: Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet is applied to the bottom surface of a controllable display to serve as a backlight. In another embodiment, the light sheet is applied to the edge of a leaky light guide for backlighting. In another embodiment, a thin light-emitting edge of the light sheet is coupled to the edge of the leaky light guide for backlighting. In another embodiment, the light sheet is affixed to a medical instrument, and light is emitted from a thin light-emitting edge of the light sheet. In one embodiment, the light sheet is optically coupled to an optical fiber.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 2, 2016
    Inventors: Travis Thompson, Bradley S. Oraw, Alexander Ray, Andrew Dennis, Mark D. Lowenthal, Sarah Behm Thompson, William J. Ray, Richard A. Blanchard, Neil O. Shotton, Tammie Woolgar, Joseph Nathan, Jeffrey Baldridge, David Hardinger
  • Patent number: 9318952
    Abstract: Series switches for power delivery. A regulator operated as a current source is arranged in parallel with a switched capacitor divider. A switched capacitor divider is configured in series with a plurality of linear regulators with each regulating one of a plurality of voltage outputs from the switched capacitor divider. In another embodiment, a series switch bridge has a first pair of switches connected in series with a second pair of switches across a voltage input, each switch within a pair of switches is switched in-phase with the other while the first pair of switches is switched out of phase with the second pair of switches. A balancing capacitor is coupled across one switch in both the first and second pair to be in parallel when either of the pair of switches is closed to reduce a charge imbalance between the switches.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: April 19, 2016
    Assignee: Intel Corporation
    Inventors: Bradley S. Oraw, Telesphor Kamgaing
  • Patent number: 9275978
    Abstract: A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: March 1, 2016
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard Austin Blanchard, Bradley S. Oraw
  • Publication number: 20150373809
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 24, 2015
    Inventor: Bradley S. Oraw
  • Publication number: 20150360606
    Abstract: Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet backlights all or a portion of a translucent ceiling material of an automobile to cause the backlit portion of the ceiling material to illuminate the automobile's interior with diffused lighting. This greatly reduces glare for the driver. The emitted color of the light sheet may be adjusted to compensate for the color component added by the ceiling material color. Four light sheets may be connected in series to drop approximately 12 volts. The light sheet color may be controllable by using adjustable RGB color components, either with phosphors or different LED colors.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Travis Thompson, Bradley S. Oraw, Alexander Ray, Andrew Dennis, Mark D. Lowenthal, Sara Behm, William J. Ray, Richard A. Blanchard, Neil O. Shotton
  • Publication number: 20150366025
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Inventor: Bradley S. Oraw
  • Patent number: 9196606
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer, containing an array of vertical MOSFETS, is aligned and bonded to an LED wafer, containing a corresponding array of vertical LEDs, and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 24, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Publication number: 20150303177
    Abstract: A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Richard Austin Blanchard, Bradley S. Oraw
  • Patent number: 9153732
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: October 6, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Publication number: 20140191246
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer, containing an array of vertical MOSFETS, is aligned and bonded to an LED wafer, containing a corresponding array of vertical LEDs, and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Publication number: 20140170792
    Abstract: A thin film vertical light emitting diode (VLED) structure and process are described. Features of the design include the following: bonding multiple smaller diameter LED wafers to a larger diameter carrier wafer, which reduces the per LED fabrication cost; using thin film techniques to metalize the anode and cathode and using respective annealing steps prior to photolithography patterning of LED structures; enabling the thin film process by semi-permanent bonding techniques which provide thermal and chemical stability, while allowing bond release at an opportune time by thermal, optical, or chemical means; using epitaxial substrate removal techniques to separate the entire LED film from its growth substrate; and patterning various vertical LED devices which can emit light from the n-type side (cathode), p-type side (anode), side wall, or a combination of the surfaces by using mirror layers and electrically conductive and optically transmissive layers.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Publication number: 20140159681
    Abstract: Series switches for power delivery. A regulator operated as a current source is arranged in parallel with a switched capacitor divider. A switched capacitor divider is configured in series with a plurality of linear regulators with each regulating one of a plurality of voltage outputs from the switched capacitor divider. In another embodiment, a series switch bridge has a first pair of switches connected in series with a second pair of switches across a voltage input, each switch within a pair of switches is switched in-phase with the other while the first pair of switches is switched out of phase with the second pair of switches. A balancing capacitor is coupled across one switch in both the first and second pair to be in parallel when either of the pair of switches is closed to reduce a charge imbalance between the switches.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Inventors: Bradley S. Oraw, Telesphor Kamgaing