Patents by Inventor Brandon J. O'Neill

Brandon J. O'Neill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978931
    Abstract: Molten carbonate fuel cell configurations are provided that allow for introduction of an anode input gas flow on a side of the fuel cell that is adjacent to the entry side for the cathode input gas flow while allowing the anode and cathode to operate under co-current flow and/or counter-current flow conditions. It has been discovered that improved flow properties can be achieved within the anode or cathode during co-current flow or counter-current flow operation by diverting the input flow for the anode or cathode into an extended edge seal region (in an extended edge seal chamber) adjacent to the active area of the anode or cathode, and then using a baffle to provide sufficient pressure drop for even flow distribution of the anode input flow across the anode or cathode input flow across the cathode.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: May 7, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Christopher Howard, Brandon J. O'Neill, Paul J. Rubas, Frank Hershkowitz, Lu Han, Lawrence J. Novacco, Frank J. Dobek, Jr., Keith E. Davis, Brian Bullecks
  • Patent number: 11739274
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Patent number: 11674089
    Abstract: Systems and methods are provided for conversion of a combined feed of oxygenates (such as methanol or dimethyl ether) and olefins to a high octane naphtha boiling range product with a reduced or minimized aromatics content. The oxygenate conversion can be performed under conditions that reduce or minimize hydrogen transfer. Optionally, a catalyst that further facilitates formation of branched paraffins can be used, such as a catalyst that has some type of 12-member ring site available on the catalyst surface.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: June 13, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brandon J. O'Neill, Mark A. Deimund, Ajit B. Dandekar
  • Patent number: 11673127
    Abstract: Methods are provided for formulation of catalysts with improved catalyst exposure lifetimes under oxygenate conversion conditions. In various additional aspects, methods are described for performing oxygenate conversion reactions using such catalysts with improved catalyst exposure lifetimes. The catalyst formulation methods can include formulation of oxygenate conversion catalysts with binders that are selected from binders having a surface area of roughly 250 m2/g or less, or 200 m2/g or less. In various aspects, during formulation, a weak base can be added to the zeotype crystals, to the binder material, or to the mixture of the zeotype and the binder. It has been unexpectedly discovered that addition of a weak base, so that the weak base is present in at least one component of the binder mixture prior to formulation, can result in longer catalyst exposure lifetimes under methanol conversion conditions.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: June 13, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brandon J. O'Neill, Scott J. Weigel
  • Publication number: 20230098592
    Abstract: This application relates to renewable diesel production and to production of renewable naphtha in a renewable diesel unit. Disclosed herein is an example of a method of renewable diesel production. Examples embodiments of the method may include hydrotreating the biofeedstock by reaction with hydrogen to form a hydrotreated biofeedstock; contacting at least a portion of the hydrotreated biofeedstock with a dewaxing catalyst to produce a renewable diesel product and a renewable naphtha product; separating the renewable diesel product and the renewable naphtha product in a product splitter; and monitoring an octane number of the renewable naphtha product with an analyzer.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 30, 2023
    Inventors: William J. Novak, Samuel J. Cady, Brandon J. O'Neill
  • Publication number: 20230027277
    Abstract: Systems and methods are provided for integrated conversion of biomass to ultimately form naphtha and/or diesel boiling range products. The integrated conversion can include an initial conversion of biomass to alcohols, such as by fermentation, followed by conversion of alcohols to olefins and then olefins to naphtha, jet, and diesel boiling range compounds, with high selectivity for formation of diesel boiling range compounds. The integrated conversion process can be facilitated by using a common catalyst for both the conversion of alcohols to olefins and the conversion of olefins to naphtha and/or diesel boiling range compounds. For example, ZSM-48 (an MRE zeotype framework structure catalyst) can be used as the catalyst for both conversion of alcohols to olefins and for oligomerization of olefins with increased selectivity for formation of diesel boiling range products.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 26, 2023
    Inventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill, Arsam Behkish
  • Publication number: 20220380686
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more large pore zeolitic catalysts, which may be prepared from a precursor zeolite. In some examples, a large pore zeolitic catalyst may be utilized to selectively reduce the endpoint of a hydrocarbon composition.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 1, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Patent number: 11453622
    Abstract: Processes for the catalytic conversion of alcohols and/or ethers to olefins over zeolite catalysts are described. Self-bound ZSM-5 and metal containing variants, such as Zn ZSM-5, produce high yields of olefins, particularly C3+ olefins, between 250 and 450° C.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: September 27, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill
  • Publication number: 20220290057
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Application
    Filed: July 14, 2020
    Publication date: September 15, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220255095
    Abstract: Molten carbonate fuel cell configurations are provided that allow for introduction of an anode input gas flow on a side of the fuel cell that is adjacent to the entry side for the cathode input gas flow while allowing the anode and cathode to operate under co-current flow and/or counter-current flow conditions. It has been discovered that improved flow properties can be achieved within the anode or cathode during co-current flow or counter-current flow operation by diverting the input flow for the anode or cathode into an extended edge seal region (in an extended edge seal chamber) adjacent to the active area of the anode or cathode, and then using a baffle to provide sufficient pressure drop for even flow distribution of the anode input flow across the anode or cathode input flow across the cathode.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Christopher Howard, Brandon J. O'Neill, Paul J. Rubas, Frank Hershkowitz, Lu Han, Lawrence J. Novacco, Frank J. Dobek, Keith David, Brian Bullecks
  • Patent number: 11390814
    Abstract: Processes for the catalytic conversion of alcohols and/or ethers to olefins over zeolite catalysts are described. ZSM-48 and metal containing variants, such as Zn ZSM-48, produce high yields of olefins, particularly ethylene or C3+ olefins, between 200 and 500° C.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: July 19, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill
  • Patent number: 11352571
    Abstract: Systems and methods are provided for conversion of oxygenate feeds to lubricant and/or distillate boiling range compounds with desirable properties by first selectively converting oxygenates to light olefins and then converting the light olefins to distillate and lubricant boiling range compounds with beneficial properties. The distillate boiling range products can have an unexpectedly high cetane, while the lubricant boiling range products can have an unexpectedly high viscosity index. The ability to form the distillate boiling range products and lubricant boiling range products is facilitated by using a Ni-enhanced oligomerization catalyst.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Mark A. Deimund, Brandon J. O'Neill, Ajit B. Dandekar
  • Patent number: 11318451
    Abstract: Processes are provided for preparing molecular sieves of framework structure MEI, TON, MRE, MWW, MFS, MOR, FAU, EMT, or MSE. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of cationic surfactants having a quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars and combinations thereof.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi, Brandon J. O'Neill
  • Publication number: 20220119720
    Abstract: Systems and methods are provided for integration of electrolysis with biomass gasification to generate synthesis gas that can be used for production of renewable fuels and/or other hydrocarbonaceous compounds. The hydrocarbonaceous compounds can include compounds formed by chemical synthesis, such as alkanes formed by a Fischer-Tropsch process or methanol formed by a methanol synthesis process; or the hydrocarbonaceous compounds can include compounds formed by fermentation, such as alcohols formed by micro-organisms that use the synthesis gas as an input feed.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 21, 2022
    Inventors: James R. Bielenberg, Brandon J. O'Neill, Zarath M. Summers
  • Patent number: 11299443
    Abstract: Systems and methods are provided for oligomerization of olefins to distillate boiling range products while also recycling naphtha boiling range olefins as part of the feed. By performing the olefin oligomerization while also recycling naphtha boiling range olefins, it has been discovered that the resulting distillate boiling range products can have an unexpected improvement in diesel combustion quality, such as an unexpected improvement in cetane rating. In order to manage coke formation and maintain consistent activity profile for the oligomerization catalyst, the reaction can be performed in a moving bed reactor. Additional temperature control can be maintained by the recycling of the naphtha boiling range portions of the oligomerization product back to the reactor.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Arsam Behkish, Lei Zhang, Brandon J. O'Neill, Mark A. Deimund, Alice Lin
  • Publication number: 20220106239
    Abstract: Processes for the catalytic conversion of alcohols and/or ethers to olefins over zeolite catalysts are described. Self-bound ZSM-5 and metal containing variants, such as Zn ZSM-5, produce high yields of olefins, particularly C3+ olefins, between 250 and 450° C.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Inventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill
  • Publication number: 20220106529
    Abstract: Processes for the catalytic conversion of alcohols and/or ethers to olefins over zeolite catalysts are described. ZSM-48 and metal containing variants, such as Zn ZSM-48, produce high yields of olefins, particularly ethylene or C3+ olefins, between 200 and 500° C.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Inventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill
  • Publication number: 20210309587
    Abstract: Systems and methods are provided for oligomerization of olefins to distillate boiling range products while also recycling naphtha boiling range olefins as part of the feed. By performing the olefin oligomerization while also recycling naphtha boiling range olefins, it has been discovered that the resulting distillate boiling range products can have an unexpected improvement in diesel combustion quality, such as an unexpected improvement in cetane rating. In order to manage coke formation and maintain consistent activity profile for the oligomerization catalyst, the reaction can be performed in a moving bed reactor. Additional temperature control can be maintained by the recycling of the naphtha boiling range portions of the oligomerization product back to the reactor.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 7, 2021
    Inventors: Arsam Behkish, Lei Zhang, Brandon J. O'Neill, Mark A. Deimund, Alice Lin
  • Publication number: 20210300842
    Abstract: Zeolitic and molecular organic framework materials as catalysts suitable for generating branched olefins from linear olefins, thereby increasing the octane of a composition comprising the linear olefins. In particular, catalyst may exhibit selectivity for methyl-shift isomerization over cracking, alkylation, and oligomerization.
    Type: Application
    Filed: February 16, 2021
    Publication date: September 30, 2021
    Inventors: Brandon J. O'Neill, Joe M. Falkowski, Allen W. Burton, Scott J. Weigel, Randall J. Meyer, Ajit B. Dandekar
  • Patent number: 11084983
    Abstract: Systems and methods are provided for conversion of oxygenate-containing feeds to a hydrocarbon effluent that includes a naphtha boiling range portion with an increased research octane number and/or increased octane rating. The conditions for converting the oxygenate-containing feed can correspond to conversion conditions for fluidized bed operation and/or moving bed operation, with a low acidity catalyst that also includes phosphorus to improve the hydrogen transfer rate relative to the expected hydrogen transfer rate for a low acidity catalyst. In addition to providing a naphtha fraction with an improved research octane number and/or octane rating, the amount of durene in the naphtha fraction can be reduced or minimized.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: August 10, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Brandon J. O'Neill