Patents by Inventor Brent B. Crow

Brent B. Crow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11197905
    Abstract: A composition includes a target pharmaceutical or biological agent, a solution containing the target pharmaceutical or biological agent, and substrate that is soluble in the solution. The substrate is capable of being solidified via a solidification process and the solidification process causes the substrate to become physically or chemically cross-linked, vitrified, or crystallized. As a result of the solidification process, particles are formed. The target pharmaceutical or biological agent within the solution retains proper conformation to ultimately produce a desired effect.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: December 14, 2021
    Assignee: TissueGen, Inc.
    Inventors: Jennifer Seifert, Paul R. Sood, Brent B. Crow, Kevin D. Nelson, Nickolas B. Griffin, Alpeshkumar P. Patel, Paul A. Hubbard
  • Patent number: 11007296
    Abstract: A drug-eluting self-retaining suture comprises a filament, a plurality of retainers, and a drug impregnated in or coated on the filament. The shape and distribution of retainers modifies the in vivo release kinetics of the drug. The drug release kinetics may be modified uniformly or region by region. The self-retaining suture may for example be used for reattaching severed nerves and release nerve growth factor or other regeneration accelerating agents into the region of the nerve injury.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: May 18, 2021
    Assignees: Ethicon, Inc., Ethicon, LLC, Tissuegen, Inc.
    Inventors: Jeffrey M. Gross, Lev Drubetsky, Alexander Naimagon, Rui Avelar, William L. D'Agostino, Kevin Don Nelson, Brent B. Crow, Nickolas B. Griffin
  • Publication number: 20190343912
    Abstract: A composition includes a target pharmaceutical or biological agent, a solution containing the target pharmaceutical or biological agent, and substrate that is soluble in the solution. The substrate is capable of being solidified via a solidification process and the solidification process causes the substrate to become physically or chemically cross-linked, vitrified, or crystallized. As a result of the solidification process, particles are formed. The target pharmaceutical or biological agent within the solution retains proper conformation to ultimately produce a desired effect.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Jennifer Seifert, Paul R. Sood, Brent B. Crow
  • Patent number: 10363281
    Abstract: A composition includes a target pharmaceutical or biological agent, a solution containing the target pharmaceutical or biological agent, and substrate that is soluble in the solution. The substrate is capable of being solidified via a solidification process and the solidification process causes the substrate to become physically or chemically cross-linked, vitrified, or crystallized. As a result of the solidification process, particles are formed. The target pharmaceutical or biological agent within the solution retains proper conformation to ultimately produce a desired effect.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: July 30, 2019
    Assignee: TissueGen, Inc.
    Inventors: Kevin D. Nelson, Brent B. Crow, Nickolas B. Griffin, Jennifer Seifert, Paul R. Sood, Alpeshkumar P. Patel, Paul A. Hubbard
  • Publication number: 20180015135
    Abstract: A composition includes a target pharmaceutical or biological agent, a solution containing the target pharmaceutical or biological agent, and substrate that is soluble in the solution. The substrate is capable of being solidified via a solidification process and the solidification process causes the substrate to become physically or chemically cross-linked, vitrified, or crystallized. As a result of the solidification process, particles are formed. The target pharmaceutical or biological agent within the solution retains proper conformation to ultimately produce a desired effect.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 18, 2018
    Inventors: Kevin D. Nelson, Brent B. Crow, Nickolas B. Griffin, Jennifer Seifert, Paul R. Sood, Alpeshkumar P. Patel, Paul A. Hubbard
  • Publication number: 20170354417
    Abstract: The present disclosure describes the use of nerve conduits as scaffolds for nerve regeneration, including spinal cord regeneration. The conduit may be hollow or contain a luminal filler such as agar or other biocompatible material.
    Type: Application
    Filed: November 16, 2015
    Publication date: December 14, 2017
    Inventors: Kevin D. Nelson, Brent B. Crow, Nickolas B. Griffin, Mario Romero-Ortega, Jennifer Seifert, Nesreen Alzoghoul
  • Patent number: 8672996
    Abstract: The invention relates to a helical coil comprising multiple reversing sense helical coil units that are capable of drug elution, come in lengths appropriate for long, diffuse lesions, have the ability to have a step-wise tapering diameter, and provide all the benefits of a small closed cell stent design while maintaining high flexibility, high radial force and crush resistance due to an underlying helical coil.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: March 18, 2014
    Assignee: TissueGen, Inc.
    Inventors: Kevin D. Nelson, Paula J. Taylor, Brent B. Crow
  • Publication number: 20130317545
    Abstract: A drug-eluting self-retaining suture comprises a filament, a plurality of retainers, and a drug impregnated in or coated on the filament. The shape and distribution of retainers modifies the in vivo release kinetics of the drug. The drug release kinetics may be modified uniformly or region by region. The self-retaining suture may for example be used for reattaching severed nerves and release nerve growth factor or other regeneration accelerating agents into the region of the nerve injury.
    Type: Application
    Filed: November 3, 2011
    Publication date: November 28, 2013
    Inventors: Jeffrey M. Gross, Lev Drubetsky, Alexander Naimagon, Rui Avelar, William L. D'Agostino, Kevin Don Nelson, Brent B. Crow, Nickolas B. Griffin
  • Patent number: 8062654
    Abstract: The present invention relates to fiber compositions comprising gels or hydrogels. The invention further relates to the composition of a gel or hydrogel loaded biodegradable fiber and methods of fabricating such fibers. The present invention further provides tissue engineering and drug-delivery compositions and methods wherein three-dimensional matrices for growing cells are prepared for in vitro and in vivo use. The invention also relates to methods of manipulating the rate of therapeutic agent release by changing both the biodegradable polymer properties as well as altering the properties of the incorporated gel or hydrogel.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: November 22, 2011
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Kevin D. Nelson, Brent B. Crow
  • Publication number: 20110172755
    Abstract: The invention relates to a helical coil comprising multiple reversing sense helical coil units that are capable of drug elution, come in lengths appropriate for long, diffuse lesions, have the ability to have a step-wise tapering diameter, and provide all the benefits of a small closed cell stent design while maintaining high flexibility, high radial force and crush resistance due to an underlying helical coil.
    Type: Application
    Filed: August 19, 2009
    Publication date: July 14, 2011
    Applicant: TissueGen, Inc.
    Inventors: Kevin D. Nelson, Paula J. Taylor, Brent B. Crow
  • Patent number: 7033603
    Abstract: The present invention relates to fiber compositions comprising gels or hydrogels. The invention further relates to the composition of a gel or hydrogel loaded biodegradable fiber and methods of fabricating such fibers. The present invention further provides tissue engineering and drug-delivery compositions and methods wherein three-dimensional matrices for growing cells are prepared for in vitro and in vivo use. The invention also relates to methods of manipulating the rate of therapeutic agent release by changing both the biodegradable polymer properties as well as altering the properties of the incorporated gel or hydrogel.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: April 25, 2006
    Assignee: Board of Regents The University of Texas
    Inventors: Kevin D. Nelson, Brent B. Crow
  • Publication number: 20040028655
    Abstract: The present invention relates to fiber compositions comprising gels or hydrogels. The invention further relates to the composition of a gel or hydrogel loaded biodegradable fiber and methods of fabricating such fibers. The present invention further provides tissue engineering and drug-delivery compositions and methods wherein three-dimensional matrices for growing cells are prepared for in vitro and in vivo use. The invention also relates to methods of manipulating the rate of therapeutic agent release by changing both the biodegradable polymer properties as well as altering the properties of the incorporated gel or hydrogel.
    Type: Application
    Filed: May 2, 2003
    Publication date: February 12, 2004
    Inventors: Kevin D. Nelson, Brent B. Crow