Patents by Inventor Bret J. Kilgrow

Bret J. Kilgrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082031
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Patent number: 11857444
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 2, 2024
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jane K. Bohn, Cody L Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Publication number: 20230255743
    Abstract: An implantable device comprising a main endoprosthesis configured for implantation in a vessel, the main endoprosthesis including at least one side portal, a first side-branch endoprosthesis configured to be deployed within the main endoprosthesis and direct flow through a first side-branch vessel via the at least one side portal, a second side-branch endoprosthesis configured to be deployed within the main endoprosthesis and direct flow through a second branch vessel via the at least one side portal, and wherein when not containing a side-branch endoprosthesis the at least one side portal comprises a side channel without fluid separation.
    Type: Application
    Filed: June 10, 2021
    Publication date: August 17, 2023
    Inventors: Merrill J. Birdno, Bret J. Kilgrow, Kehinde Adeitunu Majolagbe, Derek M. Ward, Patrick S. Young
  • Publication number: 20230190291
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Application
    Filed: October 18, 2022
    Publication date: June 22, 2023
    Inventors: Michael Broyles, Bret J. Kilgrow
  • Publication number: 20230172737
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, and an end cap having one or more protrusions extending therefrom. The protrusions may assist in retraction of end cap into an outer sheath, such as an introducer sheath. In some examples, the protrusion includes fins. In some embodiments, the endoprosthesis delivery system further includes a covering member disposed about the endoprosthesis. The protrusions may support the covering member, which may extend beyond the distal end of the endoprosthesis and onto the end cap. In some embodiments, the end cap comprises a tapered profile, which may assist in retraction of the catheter tip and end cap into an outer sheath.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 8, 2023
    Inventors: Bret J. Kilgrow, Larry J. Kovach, Brandon C. Short, Anna F. Timbie
  • Patent number: 11583425
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, and an end cap having one or more protrusions extending therefrom. The protrusions may assist in retraction of end cap into an outer sheath, such as an introducer sheath. In some examples, the protrusion includes fins. In some embodiments, the endoprosthesis delivery system further includes a covering member disposed about the endoprosthesis. The protrusions may support the covering member, which may extend beyond the distal end of the endoprosthesis and onto the end cap. In some embodiments, the end cap comprises a tapered profile, which may assist in retraction of the catheter tip and end cap into an outer sheath.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: February 21, 2023
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Bret J. Kilgrow, Larry J. Kovach, Brandon C. Short, Anna F. Timbie
  • Patent number: 11547548
    Abstract: A vascular graft incorporating a stent into a portion of its length. While various materials may be used for the vascular graft, the graft is preferably an ePTFE graft. The stent is preferably a self-expanding stent, although it may alternatively be a balloon expandable stent. The vascular graft preferably has a continuous inner tubular liner that extends between the opposing ends of the graft and provides a continuous luminal surface for blood contact that is uninterrupted by seams or joints. The length portion of the graft that does not include the stent has a greater wall thickness than does the portion including the stent.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: January 10, 2023
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Deenu Kanjickal, Bret J. Kilgrow, Larry J. Kovach, Timothy T. Stringer
  • Patent number: 11510679
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: November 29, 2022
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Michael Broyles, Bret J. Kilgrow
  • Publication number: 20220168124
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Patent number: 11285029
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 29, 2022
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Patent number: 10786258
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 29, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Michael Broyles, Bret J Kilgrow
  • Publication number: 20200237376
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Application
    Filed: February 14, 2020
    Publication date: July 30, 2020
    Inventors: Michael Broyles, Bret J. Kilgrow
  • Patent number: 10595874
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: March 24, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Michael Broyles, Bret J Kilgrow
  • Patent number: 10543116
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 28, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Publication number: 20190388252
    Abstract: An open stent (a stent having open space through its thickness at locations between the ends of the stent), incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent, spaced-apart stent elements. Preferably the spaced-apart adjacent stent elements are the result of forming the stent from a helically wound serpentine wire having space provided between adjacent windings. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used. The connecting elements are preferably longitudinally oriented.
    Type: Application
    Filed: September 4, 2019
    Publication date: December 26, 2019
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark Y. Hansen, Brian L. Johnson, Bret J. Kilgrow, Larry J. Kovach, James D. Silverman
  • Patent number: 10456281
    Abstract: An open stent (a stent having open space through its thickness at locations between the ends of the stent), incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent, spaced-apart stent elements. Preferably the spaced-apart adjacent stent elements are the result of forming the stent from a helically wound serpentine wire having space provided between adjacent windings. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used. The connecting elements are preferably longitudinally oriented.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: October 29, 2019
    Assignee: W.L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark Y. Hansen, Brian L. Souter, Bret J. Kilgrow, Larry J. Kovach, James D. Silverman
  • Publication number: 20190298556
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Publication number: 20190167459
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, and an end cap having one or more protrusions extending therefrom. The protrusions may assist in retraction of end cap into an outer sheath, such as an introducer sheath. In some examples, the protrusion includes fins. In some embodiments, the endoprosthesis delivery system further includes a covering member disposed about the endoprosthesis. The protrusions may support the covering member, which may extend beyond the distal end of the endoprosthesis and onto the end cap. In some embodiments, the end cap comprises a tapered profile, which may assist in retraction of the catheter tip and end cap into an outer sheath.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Bret J. Kilgrow, Larry J. Kovach, Brandon C. Short, Anna F. Timbie
  • Patent number: 10299948
    Abstract: An improved medical device reduces the loss of longitudinal length during expansion of a stent-graft from a compressed state to an expanded state. For example, the stent-graft is placed over a cover that provides resistance to expansion of the balloon during inflation, which reduces longitudinal compressing forces exerted on the stent-graft.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 28, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jane K. Bohn, Cody L. Hartman, Deenu G. Kanjickal, Bret J. Kilgrow, Joseph B. Koenig, James J. Nickerson, Thomas G. Triebes
  • Publication number: 20190133750
    Abstract: A vascular graft incorporating a stent into a portion of its length. While various materials may be used for the vascular graft, the graft is preferably an ePTFE graft. The stent is preferably a self-expanding stent, although it may alternatively be a balloon expandable stent. The vascular graft preferably has a continuous inner tubular liner that extends between the opposing ends of the graft and provides a continuous luminal surface for blood contact that is uninterrupted by seams or joints. The length portion of the graft that does not include the stent has a greater wall thickness than does the portion including the stent.
    Type: Application
    Filed: September 7, 2018
    Publication date: May 9, 2019
    Inventors: Edward H. Cully, Deenu Kanjickal, Bret J. Kilgrow, Larry J. Kovach, Timothy T. Stringer