Patents by Inventor Brett Hull

Brett Hull has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072131
    Abstract: Strategic placement and patterning of electrodes, vias, and metal runners can significantly reduce strain in a power semiconductor die. By modifying the path defining electrodes, vias, and metal runners, as well as patterning the material layers thereof, strain can be better managed to increase reliability of a power semiconductor die.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Daniel Jenner Lichtenwalner, Edward Robert Van Brunt, Thomas E. Harrington, III, Shadi Sabri, Brett Hull, Brice McPherson, Joe W. McPherson
  • Patent number: 11869948
    Abstract: Strategic placement and patterning of electrodes, vias, and metal runners can significantly reduce strain in a power semiconductor die. By modifying the path defining electrodes, vias, and metal runners, as well as patterning the material layers thereof, strain can be better managed to increase reliability of a power semiconductor die.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: January 9, 2024
    Assignee: Wolfspeed, Inc.
    Inventors: Daniel Jenner Lichtenwalner, Edward Robert Van Brunt, Thomas E. Harrington, III, Shadi Sabri, Brett Hull, Brice McPherson, Joe W. McPherson
  • Patent number: 11837629
    Abstract: Semiconductor devices include a semiconductor layer structure comprising a drift region that includes a wide band-gap semiconductor material. A shielding pattern is provided in an upper portion of the drift region in an active region of the device and a termination structure is provided in the upper portion of the drift region in a termination region of the device. A gate trench extends into an upper surface of the semiconductor layer structure. The semiconductor layer structure includes a semiconductor layer that extends above and at least partially covers the termination structure.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: December 5, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Daniel J. Lichtenwalner, Edward R. Van Brunt, Brett Hull
  • Publication number: 20220262909
    Abstract: Strategic placement and patterning of electrodes, vias, and metal runners can significantly reduce strain in a power semiconductor die. By modifying the path defining electrodes, vias, and metal runners, as well as patterning the material layers thereof, strain can be better managed to increase reliability of a power semiconductor die.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Daniel Jenner Lichtenwalner, Edward Robert Van Brunt, Thomas E. Harrington, III, Shadi Sabri, Brett Hull, Brice McPherson, Joe W. McPherson
  • Publication number: 20220140132
    Abstract: Semiconductor devices, and more particularly passivation structures for semiconductor devices are disclosed. A semiconductor device may include an active region, an edge termination region that is arranged along a perimeter of the active region, and a passivation structure that may form a die seal along the edge termination region. The passivation structure may include a number of passivation layers in an arrangement that improves mechanical strength and adhesion of the passivation structure along the edge termination region. An interface formed by at least one of the passivation layers may be provided with a pattern that serves to more evenly distribute forces related to thermal expansion and contraction during power cycling, thereby reducing cracking and delamination in the passivation structure. A patterned layer may be at least partially embedded in the passivation structure in an arrangement that forms the corresponding pattern in overlying portions of the passivation structure.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 5, 2022
    Inventors: Edward Robert Van Brunt, Joe W. McPherson, Thomas E. Harrington, III, Sei-Hyung Ryu, Brett Hull, In-Hwan Ji
  • Patent number: 11222955
    Abstract: A semiconductor device includes a semiconductor layer structure that includes silicon carbide, a gate dielectric layer on the semiconductor layer structure, and a gate electrode on the gate dielectric layer opposite the semiconductor layer structure. In some embodiments, a periphery of a portion of the gate dielectric layer that underlies the gate electrode is thicker than a central portion of the gate dielectric layer, and a lower surface of the gate electrode has recessed outer edges such as rounded and/or beveled outer edges.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: January 11, 2022
    Assignee: Wolfspeed, Inc.
    Inventors: Daniel Jenner Lichtenwalner, Brett Hull, Edward Robert Van Brunt, Shadi Sabri, Matt N. McCain
  • Patent number: 11184001
    Abstract: Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 23, 2021
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Adam Barkley, Sei-Hyung Ryu, Brett Hull
  • Publication number: 20210336021
    Abstract: A semiconductor device includes a semiconductor layer structure that includes silicon carbide, a gate dielectric layer on the semiconductor layer structure, and a gate electrode on the gate dielectric layer opposite the semiconductor layer structure. In some embodiments, a periphery of a portion of the gate dielectric layer that underlies the gate electrode is thicker than a central portion of the gate dielectric layer, and a lower surface of the gate electrode has recessed outer edges such as rounded and/or beveled outer edges.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Daniel Jenner Lichtenwalner, Brett Hull, Edward Robert Van Brunt, Shadi Sabri, Matt N. McCain
  • Publication number: 20210098568
    Abstract: Semiconductor devices include a semiconductor layer structure comprising a drift region that includes a wide band-gap semiconductor material. A shielding pattern is provided in an upper portion of the drift region in an active region of the device and a termination structure is provided in the upper portion of the drift region in a termination region of the device. A gate trench extends into an upper surface of the semiconductor layer structure. The semiconductor layer structure includes a semiconductor layer that extends above and at least partially covers the termination structure.
    Type: Application
    Filed: November 19, 2020
    Publication date: April 1, 2021
    Inventors: Daniel J. Lichtenwalner, Edward R. Van Brunt, Brett Hull
  • Patent number: 10886396
    Abstract: A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SiC) MOSFET device.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: January 5, 2021
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Brett Hull
  • Patent number: 10861931
    Abstract: Semiconductor devices include a semiconductor layer structure comprising a drift region that includes a wide band-gap semiconductor material. A shielding pattern is provided in an upper portion of the drift region in an active region of the device and a termination structure is provided in the upper portion of the drift region in a termination region of the device. A gate trench extends into an upper surface of the semiconductor layer structure. The semiconductor layer structure includes a semiconductor layer that extends above and at least partially covers the termination structure.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: December 8, 2020
    Assignee: Cree, Inc.
    Inventors: Daniel J. Lichtenwalner, Edward R. Van Brunt, Brett Hull
  • Patent number: 10847645
    Abstract: A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SiC) MOSFET device.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: November 24, 2020
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Brett Hull
  • Patent number: 10847647
    Abstract: Semiconductor devices include a plurality of gate fingers extending on a wide bandgap semiconductor layer structure. An inter-metal dielectric pattern is formed on the gate fingers, the inter-metal dielectric pattern including a plurality of dielectric fingers that cover the respective gate fingers. A top-side metallization is provided on the inter-metal dielectric pattern and on exposed portions of the upper surface of the wide bandgap semiconductor layer structure. The top-side metallization includes a first conductive diffusion barrier layer on the inter-metal dielectric pattern and on the exposed portions of the upper surface of the wide bandgap semiconductor layer structure, a conductive contact layer on an upper surface of the first conductive diffusion barrier layer, and a grain stop layer buried within the conductive contact layer.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 24, 2020
    Assignee: Cree, Inc.
    Inventors: Shadi Sabri, Daniel Lichtenwalner, Edward Robert Van Brunt, Scott Thomas Allen, Brett Hull
  • Patent number: 10840367
    Abstract: A transistor device having reduced electrical field at the gate oxide interface is disclosed. In one embodiment, the transistor device comprises a gate, a source, and a drain, wherein the gate is at least partially in contact with a gate oxide. The transistor device has a P+ region within a JFET region of the transistor device in order to reduce an electrical field on the gate oxide.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: November 17, 2020
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Brett Hull
  • Publication number: 20200295174
    Abstract: Semiconductor devices include a plurality of gate fingers extending on a wide bandgap semiconductor layer structure. An inter-metal dielectric pattern is formed on the gate fingers, the inter-metal dielectric pattern including a plurality of dielectric fingers that cover the respective gate fingers. A top-side metallization is provided on the inter-metal dielectric pattern and on exposed portions of the upper surface of the wide bandgap semiconductor layer structure. The top-side metallization includes a first conductive diffusion barrier layer on the inter-metal dielectric pattern and on the exposed portions of the upper surface of the wide bandgap semiconductor layer structure, a conductive contact layer on an upper surface of the first conductive diffusion barrier layer, and a grain stop layer buried within the conductive contact layer.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Inventors: Shadi Sabri, Daniel Lichtenwalner, Edward Robert Van Brunt, Scott Thomas Allen, Brett Hull
  • Publication number: 20200212908
    Abstract: Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 2, 2020
    Inventors: Qingchun Zhang, Adam Barkley, Sei-Hyung Ryu, Brett Hull
  • Patent number: 10601413
    Abstract: Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 24, 2020
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Adam Barkley, Sei-Hyung Ryu, Brett Hull
  • Patent number: 10510905
    Abstract: A Schottky diode includes a drift region, a channel in an upper portion of the drift region, and first and second adjacent blocking junctions in the upper portion of the drift region that define the channel therebetween. The drift region and channel are doped with dopants having a first conductivity type, and the first and second blocking junctions doped with dopants having a second conductivity type that is opposite the first conductivity type. The blocking junctions extend at least one micron into the upper portion of the drift region and are spaced apart from each other by less than 3.0 microns.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: December 17, 2019
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Edward R. Van Brunt, Brett Hull, Scott Thomas Allen
  • Publication number: 20190081624
    Abstract: Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 14, 2019
    Inventors: Qingchun Zhang, Adam Barkley, Sei-Hyung Ryu, Brett Hull
  • Publication number: 20190043980
    Abstract: A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SiC) MOSFET device.
    Type: Application
    Filed: October 1, 2018
    Publication date: February 7, 2019
    Inventors: Qingchun Zhang, Brett Hull