Patents by Inventor Brian D. Erickson

Brian D. Erickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11982674
    Abstract: In some embodiments, a mass spectrometry tag may comprise a linker region, a mass balance region, and a reporter region. The mass spectrometry tag may be configured to fragment in a mass spectrometer via an energy dependent process to produce multiple reporter molecules. For example, the reporter region of the tag may be configured to produce at least two reporter molecules via fragmentation. In some embodiments, one or more regions of the tag may comprise at least one heavy isotope. In some such embodiments, the ability to fragment into multiple reporter molecules as well as the placement and/or number of heavy isotope(s) allows the mass spectrometry tag to be distinguished from other similar mass spectrometry tags. In some such embodiments, the ability to distinguish between tags having the same or substantially similar total mass to charge ratio and reporter region mass may allow the system to have a greater multiplexing capacity than conventional systems.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: May 14, 2024
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Craig Braun, Wilhelm Haas, Steven P. Gygi, Gregory H. Bird, Loren D. Walensky, Martin Helmut Wuhr, Brian K. Erickson
  • Patent number: 9903910
    Abstract: Through-silicon vias (TSVs) are tested using a modified integrated circuit test probe array, an electron beam generation device, a beam direction control device and an electron beam detection device. The TSV extends through a silicon substrate with end portions exposed or accessible by contacts disposed on opposing upper and lower surfaces of the substrate. The test probe array includes a test probe that accesses the lower TSV end portion and applies an AC test signal. An electron beam is directed by the beam direction control device onto the upper substrate surface such that a beam portion reflected from the upper TSV end portion is captured by the electron beam detection device. Reflected beam data is then analyzed to verify the TSV is properly formed. Various scan patterns, different test signal frequencies and an optional resistive coating are used to enhance the TSV testing process.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: February 27, 2018
    Inventor: Brian D. Erickson
  • Publication number: 20170102428
    Abstract: Through-silicon vias (TSVs) are tested using a modified integrated circuit test probe array, an electron beam generation device, a beam direction control device and an electron beam detection device. The TSV extends through a silicon substrate with end portions exposed or accessible by contacts disposed on opposing upper and lower surfaces of the substrate. The test probe array includes a test probe that accesses the lower TSV end portion and applies an AC test signal. An electron beam is directed by the beam direction control device onto the upper substrate surface such that a beam portion reflected from the upper TSV end portion is captured by the electron beam detection device. Reflected beam data is then analyzed to verify the TSV is properly formed. Various scan patterns, different test signal frequencies and an optional resistive coating are used to enhance the TSV testing process.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Inventor: Brian D. Erickson
  • Patent number: 9529041
    Abstract: Through-silicon vias (TSVs) are tested using a modified integrated circuit test probe array, an electron beam generation device, a beam direction control device and an electron beam detection device. The TSV extends through a silicon substrate with end portions exposed or accessible by contacts disposed on opposing upper and lower surfaces of the substrate. The test probe array includes a test probe that accesses the lower TSV end portion and applies an AC test signal. An electron beam is directed by the beam direction control device onto the upper substrate surface such that a beam portion reflected from the upper TSV end portion is captured by the electron beam detection device. Reflected beam data is then analyzed to verify the TSV is properly formed. Various scan patterns, different test signal frequencies and an optional resistive coating are used to enhance the TSV testing process.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: December 27, 2016
    Inventor: Brian D. Erickson
  • Publication number: 20140125369
    Abstract: Through-silicon vias (TSVs) are tested using a modified integrated circuit test probe array, an electron beam generation device, a beam direction control device and an electron beam detection device. The TSV extends through a silicon substrate with end portions exposed or accessible by contacts disposed on opposing upper and lower surfaces of the substrate. The test probe array includes a test probe that accesses the lower TSV end portion and applies an AC test signal. An electron beam is directed by the beam direction control device onto the upper substrate surface such that a beam portion reflected from the upper TSV end portion is captured by the electron beam detection device. Reflected beam data is then analyzed to verify the TSV is properly formed. Various scan patterns, different test signal frequencies and an optional resistive coating are used to enhance the TSV testing process.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Inventor: Brian D. Erickson
  • Patent number: 7480491
    Abstract: A wireless programmable logic device contains a wireless component and a programmable logic component. A remote wireless host can be used to program the programmable logic device. Some product designs require multiple programmable logic devices. When wireless programmable logic devices are used in the design, all of them can receive data and commands from the host. As a result, the wireless host can control the order of configuration and the start time of these logic devices. There is no need to build glue logic for this purpose. Consequently, the efficiency in product design is improved. If there are problems in programming a programmable logic device, the host can log the failed operation in its memory. This information could be used to improve production flow.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: January 20, 2009
    Assignee: Xilinx, Inc.
    Inventors: Bernardo A. Elayda, III, Brian D. Erickson
  • Patent number: 7302562
    Abstract: Method and system for a programmable device programmer. The disclosure describes various embodiments for programming a target programmable device by a programmer. In one embodiment, the programmer determines availability of updated configuration data for a hardware component of the programmer. The programmer includes the software component coupled to the hardware component. An update mode of the hardware component is enabled in response to availability of the updated configuration data, and programming of the target programmable device is disabled while the hardware component is in the update mode. A programmable device internal to the hardware component is programmed with the updated configuration data while the hardware component is in the update mode, and the update mode is disabled in response to completion of programming of the at least one programmable device. A target programmable device may then be programmed by the programmer having the updated configuration data.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: November 27, 2007
    Assignee: Xilinx, Inc.
    Inventors: Neil G. Jacobson, Emigdio M. Flores, Jr., Sanjay Srivastava, Bin Dai, Sungnien Mao, Rosa M. Y. Chow, Pushpasheel Tawade, David E. Schweigler, Brian D. Erickson, Bernardo A. Elayda, III
  • Patent number: 6873842
    Abstract: A wireless programmable logic device contains a wireless component and a programmable logic component. A remote wireless host can be used to program the programmable logic device. Some product designs require multiple programmable logic devices. When wireless programmable logic devices are used in the design, all of them can receive data and commands from the host. As a result, the wireless host can control the order of configuration and the start time of these logic devices. There is no need to build glue logic for this purpose. Consequently, the efficiency in product design is improved. If there are problems in programming a programmable logic device, the host can log the failed operation in its memory. This information could be used to improve production flow.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: March 29, 2005
    Assignee: Xilinx, Inc.
    Inventors: Bernardo Elayda, Brian D. Erickson
  • Patent number: 6529041
    Abstract: A power control output circuit for a PLD that allows the PLD to selectively operate in either a low current (“normal”) output mode, or a high current power control mode. In one embodiment, the power control output circuit is incorporated into a special Input/Output Blocks (PC-IOB) of the PLD. When no power control function is needed, a high current output portion of the power control output circuit is deactivated by storing an associated data value a power control configuration memory cell of the PLD, and an output driver of the PC-IOB generates low current output signals on a device I/O terminal. To perform power control functions, a portion of the PLD's programmable logic circuitry is configured to generate a power control data signal, and the high current output portion of the power control output circuit is enabled by storing a corresponding data value in the power control configuration memory cell.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 4, 2003
    Assignee: Xilinx, Inc.
    Inventors: Mark M. Ng, Brian D. Erickson, Jesse H. Jenkins, IV
  • Publication number: 20020173298
    Abstract: A wireless programmable logic device contains a wireless component and a programmable logic component. A remote wireless host can be used to program the programmable logic device. Some product designs require multiple programmable logic devices. When wireless programmable logic devices are used in the design, all of them can receive data and commands from the host. As a result, the wireless host can control the order of configuration and the start time of these logic devices. There is no need to build glue logic for this purpose. Consequently, the efficiency in product design is improved. If there are problems in programming a programmable logic device, the host can log the failed operation in its memory. This information could be used to improve production flow.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 21, 2002
    Inventors: Bernardo Elayda, Brian D. Erickson
  • Patent number: 6363019
    Abstract: A programmable logic device (PLD) including a non-volatile memory array for persistently storing configuration data, and a volatile memory array for temporarily storing the configuration data and controlling the various logic resources of the PLD to perform a user's logic operation. When the PLD is reset, an addressing circuit causes a column of non-volatile memory cells to transmit configuration data values to a corresponding column of volatile memory cells on a series of write lines. To verify that a configuration data value is successfully written from each non-volatile memory cell to a corresponding volatile memory cell, the data value transmitted on each write line is compared with the stored data value transmitted from each volatile memory cell on a corresponding read line.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: March 26, 2002
    Assignee: Xilinx, Inc.
    Inventors: Brian D. Erickson, Barry Wong, Patrick T. Bever
  • Patent number: 6334208
    Abstract: Apparatus and method for programming a programmable logic device (PLD) using a status bit to indicate whether in-system programming (ISP) has been completed. Complex electronic systems often use PLDs to interface to other elements of the system and to the outside environment. Such PLDs are reprogrammed by the system controller using the boundary-scan/JTAG access port, but a power failure may cause an unwanted termination of the programming cycle before all of the PLD internal logic, connections, and functional I/O pins are properly programmed. In such a situation, some or all of the PLD functional (input/output) pins could be driven to erroneous states such that other devices connected to them would be damaged or prevented from operating correctly. The status indicator is set to hold all PLD functional pins in a high impedance condition (tri-state) until programming or another non-mission mode of PLD operation is successfully concluded.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: December 25, 2001
    Assignee: Xilinx, Inc.
    Inventor: Brian D. Erickson
  • Patent number: 6100705
    Abstract: A method and structure for testing static signal levels on an integrated circuit device using an electron beam deflection device. Each static signal is applied to a first terminal of a switch, such as an AND gate, an OR gate, or a pass transistor. An alternating control signal of approximately 1 MHz is transmitted to a second terminal of the switch such that the switch generates an output signal that is either constant (if the static signal is at a first level), or has a frequency equal to that of the alternating control signal (if the static signal is at a second level). The output signal is transmitted to a pad located on an exposed surface of the integrated circuit, where an electron beam deflection device is utilized to determine the static signal level by detecting the presence or absence of an alternating signal. A method for determining the voltage level of a signal includes applying the signal to the gate of a transistor and an alternating control signal to an input terminal.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: August 8, 2000
    Assignee: Xilinx, Inc.
    Inventors: Charles R. Erickson, Brian D. Erickson
  • Patent number: 6020633
    Abstract: An integrated circuit combination includes a second piggy-back small integrated circuit chip mounted on the carrier of a first integrated circuit chip. The combination can be mounted on a board without requiring board space for interconnecting the first and second chips. The lid of the first chip is cut away so that the second chip can be mounted to the first without increasing the height of the combination over the height of the first chip. The two chips preferably comprise an FPGA and a PROM for programming the FPGA. The combination increases security as well as reducing board space because it is difficult to read a bitstream being transmitted from the PROM to the FPGA when the PROM is directly mounted on the FPGA.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: February 1, 2000
    Assignee: Xilinx, Inc.
    Inventor: Brian D. Erickson
  • Patent number: 5990704
    Abstract: A multi-state input drive structure is provided to forward externally generated high and low input signals, as well as to receive at least a third, internally generated, comparatively weak signal, preferably an oscillating signal, which triggers a third internally forwarded signal when neither of the high and low input signals is received. The inventive circuit drives three internally forwarded output signals from a single external signal source. Since this circuit may be duplicated for every pin on a device for which two cycle delays do not affect performance, availability of a third input state on N inputs allows 3.sup.N input codes as opposed to 2.sup.N for the conventional "high" and "low" levels normally available.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: November 23, 1999
    Assignee: Xilinx, Inc.
    Inventors: Charles R. Erickson, Brian D. Erickson