Patents by Inventor Brian D. Flinn

Brian D. Flinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024792
    Abstract: There is provided a removable chromatic witness assembly, system, and method to monitor thermal events and impact events on a surface of a composite structure. The removable chromatic witness assembly has a plurality of chromatic witness geometric configurations separately coupled in an arrangement to one or more portions of a polymeric film layer. Each chromatic witness geometric configuration has a plurality of chromatic probes of a same type incorporated into an adhesive material. At least two of the geometric configurations have a different type of chromatic probes with a different sensing capability for thermal events and impact events on the composite structure. The polymeric film layer and the geometric configurations form the removable chromatic witness assembly in a form of a removable chromatic witness applique configured to be removably applied directly and continuously to the surface of the composite structure, and configured to monitor the thermal and impact events.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 17, 2018
    Assignee: The Boeing Company
    Inventors: Ryan E. Toivola, Alex Kwan-Yue Jen, Sei-Hum Jang, Brian D. Flinn, Eric G. Winter, Gary E. Georgeson, Wesley L. Holman, Gregory R. Gleason, Scott R. Johnston
  • Publication number: 20180038792
    Abstract: There is provided a removable chromatic witness assembly, system, and method to monitor thermal events and impact events on a surface of a composite structure. The removable chromatic witness assembly has a plurality of chromatic witness geometric configurations separately coupled in an arrangement to one or more portions of a polymeric film layer. Each chromatic witness geometric configuration has a plurality of chromatic probes of a same type incorporated into an adhesive material. At least two of the geometric configurations have a different type of chromatic probes with a different sensing capability for thermal events and impact events on the composite structure. The polymeric film layer and the geometric configurations form the removable chromatic witness assembly in a form of a removable chromatic witness applique configured to be removably applied directly and continuously to the surface of the composite structure, and configured to monitor the thermal and impact events.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 8, 2018
    Inventors: Ryan E. Toivola, Alex Kwan-Yue Jen, Sei-Hum Jang, Brian D. Flinn, Eric G. Winter, Gary E. Georgeson, Wesley L. Holman, Gregory R. Gleason, Scott R. Johnston
  • Publication number: 20170234849
    Abstract: Improved methods of detecting thermal exposure are provided herein. The provided methods utilize initially dormant luminescent probes incorporated into a matrix to form a composite. When exposed to heat over a period of time, the luminescent probes are “activated” through a molecular transformation initiated by thermal energy. The activated probes exhibit a luminescent profile based on the extent of thermal exposure, thereby providing an indicator of the thermal exposure experienced by the matrix. When the composite is used to produce a structural component of a vehicle (e.g., an aircraft), the methods provide a convenient, large-area indicator of thermal damage experienced by the structural component.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Brian D. Flinn, Alex Kwan-yue Jen, Sei-Hum Jang, Tucker Howie, Zhengwei Shi
  • Patent number: 9671386
    Abstract: Improved methods of detecting thermal exposure are provided herein. The provided methods utilize initially dormant luminescent probes incorporated into a matrix to form a composite. When exposed to heat over a period of time, the luminescent probes are “activated” through a molecular transformation initiated by thermal energy. The activated probes exhibit a luminescent profile based on the extent of thermal exposure, thereby providing an indicator of the thermal exposure experienced by the matrix. When the composite is used to produce a structural component of a vehicle (e.g., an aircraft), the methods provide a convenient, large-area indicator of thermal damage experienced by the structural component.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 6, 2017
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Brian D. Flinn, Alex Kwan-yue Jen, Sei-Hum Jang, Tucker Howie, Zhengwei Shi
  • Patent number: 9254622
    Abstract: A method of forming a composite material includes providing an uncured substrate. The method further includes applying a bond ply to the substrate and a peel ply to the bond ply. In some embodiments, the bond ply comprises a fiber veil, such as a glass fiber veil. The method further includes curing the substrate and removing the bond ply and peel ply from the cured substrate, thereby exposing an active surface on the substrate. Removing the bond ply and peel ply can create fractures in the active surface that increase the roughness and bondability of the active surface. In several embodiments, the composite materials described herein can be compatible with a wide range of adhesives, including room temperature adhesives.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: February 9, 2016
    Assignee: University of Washington
    Inventor: Brian D. Flinn
  • Publication number: 20150209826
    Abstract: The present disclosure relates to silicon oxynitride materials having a variety of surface energies. One aspect of the disclosure is a method for forming a ceramic/substrate interface comprising forming a layer of substantially perhydrogenated polysilazane on a surface of a substrate; exposing the layer of substantially perhydrogenated polysilazane to energy sufficient to form a silicon oxynitride layer having an exposed surface, the exposed surface of the silicon oxynitride layer having a surface energy of at least about 50 mN/m; disposing a ceramic material or a precursor thereof on the silicon oxynitride layer; and heat treating to form the ceramic/substrate interface. Another aspect of the disclosure is an article having a patterned silicon oxynitride surface comprising a first region; and a second region, the second region having a surface energy substantially lower than the surface energy of the first region.
    Type: Application
    Filed: January 29, 2015
    Publication date: July 30, 2015
    Inventors: Rajendra Bordia, Brian D. Flinn, Kaishi Wang
  • Publication number: 20140328369
    Abstract: Improved methods of detecting thermal exposure are provided herein. The provided methods utilize initially dormant luminescent probes incorporated into a matrix to form a composite. When exposed to heat over a period of time, the luminescent probes are “activated” through a molecular transformation initiated by thermal energy. The activated probes exhibit a luminescent profile based on the extent of thermal exposure, thereby providing an indicator of the thermal exposure experienced by the matrix. When the composite is used to produce a structural component of a vehicle (e.g., an aircraft), the methods provide a convenient, large-area indicator of thermal damage experienced by the structural component.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 6, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Brian D. Flinn, Alex Kwan-yue Jen, Sei-Hum Jang, Tucker Howie, Zhengwei Shi
  • Patent number: 8720278
    Abstract: A coating system includes at least one polymeric coating layer comprising at least one fluorescent dye, wherein an optical behavior of the fluorescent dye changes as a function of a stress of the at least one polymeric coating.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 13, 2014
    Assignee: The Boeing Company
    Inventors: Ryan Toivola, Brian D. Flinn, Zhengwei Shi, Sei-Hum Jang, Gary E. Georgeson, Alex Kwan-yue Jen
  • Publication number: 20130280488
    Abstract: The present technology relates generally to bond ply adhesive bonding of composites, and associated systems and methods. In some embodiments, a method of forming a composite material includes providing an uncured substrate. The method further includes applying a bond ply to the substrate and a peel ply to the bond ply. In some embodiments, the bond ply comprises a fiber veil, such as a glass fiber veil. The method further includes curing the substrate and removing the bond ply and peel ply from the cured substrate, thereby exposing an active surface on the substrate. Removing the bond ply and peel ply can create fractures in the active surface that increase the roughness and bondability of the active surface. In several embodiments, the composite materials described herein can be compatible with a wide range of adhesives, including room temperature adhesives.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventor: Brian D. Flinn