Patents by Inventor Brian D. Hoffman

Brian D. Hoffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971905
    Abstract: A synchronization system node may comprise one or more processors and a synchronization database. The synchronization database may comprise a subscriber list of a plurality of subscribers, a first buffer including a plurality of attributes in a first state, and a second buffer including the plurality of attributes in a second state. The node may be configured to receive updates for one or more of the plurality of attributes and store, to the first buffer, the updates for the one or more of the plurality of attributes to update the plurality of attributes of the first buffer to an updated first state. While receiving the updates from the publisher, the nod may publish, from the second buffer to a first subscriber of the plurality of subscribers, one or more of the plurality of attributes in the second state.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: April 30, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brian D. Hoffman, Joshua Radel
  • Publication number: 20240108425
    Abstract: A system comprises a teleoperational assembly including an operator control system and a first teleoperational manipulator configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of a first medical instrument in a surgical environment. The system also comprises a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one icon representing a function for the first medical instrument.
    Type: Application
    Filed: October 9, 2023
    Publication date: April 4, 2024
    Inventors: Tabish Mustufa, Heath Feather, Daniel H. Gomez, Brian D. Hoffman, Paul W. Mohr, Huan L. Phan
  • Patent number: 11941734
    Abstract: A robotic system may comprise a first robotic arm operatively coupleable to a first tool. The first tool has a first working end. The system may also comprise an image capture device, a display, and a processor. The processor may be configured to cause an image of a work site, which was captured by the image capture device from a perspective of an image reference frame, to be displayed on the display. The image of the work site includes an image of the first working end of the first tool. The processor may also determine a position of the first working end of the first tool in the image of the work site and render a tool information overlay at the position of the first working end of the first tool in the image of the work site. The tool information overlay visually indicates state information for the first tool. The processor may also change the tool information overlay while the first tool is in a first operational state by changing a brightness of the tool information overlay.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 26, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 11931122
    Abstract: A teleoperated surgical system is provided comprising: a first robotic surgical instrument; an image capture; a user display; a user input command device coupled to receive user input commands to control movement of the first robotic surgical instrument; and a movement controller coupled to scale a rate of movement of the first robotic surgical instrument, based at least in part upon a surgical skill level at using the first robotic surgical instrument of the user providing the received user input commands, from a rate of movement indicated by the user input commands received at the user input command device.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: March 19, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Mahdi Azizian, Simon P. DiMaio, Brian D. Hoffman, Anthony M. Jarc, Henry C. Lin, May Quo-Mei Liu, Ian E. McDowall, Brent Tokarchuk
  • Patent number: 11911003
    Abstract: A computer-assisted surgical system simultaneously provides visible light and alternate modality images that identify tissue or increase the visual salience of features of clinical interest that a surgeon normally uses when performing a surgical intervention using the computer-assisted surgical system. Hyperspectral light from tissue of interest is used to safely and efficiently image that tissue even though the tissue may be obscured in the normal visible image of the surgical field. The combination of visible and hyperspectral images are analyzed to provide details and information concerning the tissue or other bodily function that were not previously available.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 27, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ian E. McDowall, Jeffrey M. DiCarlo, Brian D. Hoffman, William Jason Culman
  • Patent number: 11903665
    Abstract: A medical imaging system comprises a teleoperational assembly which includes a medical instrument including an instrument tip and an imaging instrument including an imaging instrument tip. The medical imaging system also comprises a processing unit including one or more processors. The processing unit may be configured to determine an instrument tip position for the instrument tip, determine an instrument tip position error relative to the imaging instrument, and determine at least one instrument tip bounding volume based on the determined instrument tip position, the determined instrument tip position error, and a ratio between an error radius of the instrument tip position error and a size of a display screen.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: February 20, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Brian D. Hoffman, Paul W. Mohr
  • Patent number: 11896441
    Abstract: A measurement system accesses first and second images captured respectively from first and second vantage points by first and second cameras included within a stereoscopic endo scope located at a surgical area associated with a patient. The measurement system receives user input designating a user-selected two-dimensional (ā€œ2Dā€) endpoint corresponding to a feature within the surgical area as represented in the first image, and identifies, based on the user-selected 2D endpoint, a matched 2D endpoint corresponding to the feature as represented in the second image. Based on the user-selected and matched 2D endpoints, the measurement system defines a three-dimensional (ā€œ3Dā€) endpoint corresponding to the feature within the surgical area. The measurement system then determines a distance from the 3D endpoint to an additional 3D endpoint corresponding to an additional feature within the surgical area. Corresponding systems and methods are also described.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 13, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Rohitkumar Godhani, Brian D. Hoffman
  • Publication number: 20240037721
    Abstract: A system may access an image that is captured by an imaging device and that depicts an operational scene illuminated by close-range light. The system may also access a depth map of the operational scene. Based on the image and the depth map, the system may generate a processed image depicting the operational scene as being illuminated by a virtual light source that is to be simulated to be illuminating the operational scene and may provide the processed image for presentation on a display screen. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 1, 2024
    Inventors: Geoffrey A. Richmond, Brian D. Hoffman
  • Publication number: 20240024051
    Abstract: A surgical method is provided for use with a teleoperated surgical system (surgical system), the method comprising: recording surgical instrument kinematic information indicative of surgical instrument motion produced within the surgical system during the occurrence of the surgical procedure; determining respective kinematic signatures associated with respective surgical instrument motions; producing an information structure in a computer readable storage device that associates respective kinematic signatures with respective control signals; comparing, during a performance of the surgical procedure surgical instrument kinematic information during the performance with at least one respective kinematic signature; launching, during a performance of the surgical procedure an associated respective control signal in response to a match between surgical instrument kinematics during the performance and a respective kinematic signature.
    Type: Application
    Filed: July 12, 2023
    Publication date: January 25, 2024
    Inventors: Brent Tokarchuk, Mahdi Azizian, Joey Chau, Simon P. DiMaio, Brian D. Hoffman, Anthony M. Jarc, Henry C. Lin, Ian E. McDowall, William C. Nowlin, John D. Seaman, II, Jonathan M. Sorger
  • Publication number: 20230371783
    Abstract: An apparatus may configure an illuminator to illuminate a scene with non-white light. The illuminator includes a plurality of color component illumination sources. The non-white light is light other than white light and is generated by a combination of light output by the plurality of color component illumination sources. The apparatus may also control a camera to capture, in a plurality of color channels of the camera, a frame of the scene illuminated with the non-white light and adjust pixel values of a color channel of the camera in the frame of the scene to decrease noise of the color channel in the frame of the scene.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Jeffrey DiCarlo, Stephen J. Blumenkranz, Brian D. Hoffman, Geoff Richmond, Tao Zhao
  • Patent number: 11819301
    Abstract: A teleoperational medical system comprises a teleoperational assembly including an operator control system, a first teleoperational manipulator, a first medical instrument, and a processing unit including one or more processors. The first teleoperational manipulators is configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of the first medical instrument in a surgical environment. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one state indicator representing a state of a component of the first medical instrument.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: November 21, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Tabish Mustufa, Heath Feather, Daniel H. Gomez, Brian D. Hoffman, Paul W. Mohr, Huan L. Phan
  • Patent number: 11816818
    Abstract: A system may access an image that is captured by an imaging device and that depicts an operational scene illuminated by close-range light. The system may also access a depth map of the operational scene that includes depth data corresponding to each pixel in the image. Based on the depth map, the system may determine a far-range lighting coefficient for each pixel in the image based on a relationship between the corresponding depth data included in the depth map for that respective pixel and a target distance to a virtual light source that is to be simulated to be illuminating the operational scene. Based on the image and these far-range lighting coefficients, the system may generate a processed image depicting the operational scene as being illuminated by the virtual light source and may provide the processed image for presentation on a display screen. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: November 14, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Geoffrey A. Richmond, Brian D. Hoffman
  • Patent number: 11806102
    Abstract: A system may comprise an image capture device to capture an image of a work site. The system may also comprise a processor to determine whether a tool disposed at the work site is energized and determine a first area of the captured image of the work site, including or adjacent to an image of a portion of the tool in the captured image. The processor may also determine a second area of the captured image including a remainder of the captured image that does not include the first area. Conditioned upon determining that the tool is energized, at least one of the first area and the second area of the captured image of the work site may be processed to indicate that the tool in the first area is being energized. The image of the work site with the first area and the second area may be displayed.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: November 7, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Simon P. Dimaio, Brian D. Hoffman, Brandon D. Itkowitz, Paul W. Mohr, David W. Robinson, Tao Zhao, Wenyi Zhao
  • Patent number: 11759093
    Abstract: An apparatus may configure an illuminator to illuminate a scene with non-white light and control a camera to capture, in a plurality of color channels of the camera, a frame of the scene illuminated with the non-white light. The apparatus may adjust a signal of a color channel of the camera in the frame of the scene based on the non-white light.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: September 19, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Jeffrey DiCarlo, Stephen J. Blumenkranz, Brian D. Hoffman, Geoff Richmond, Tao Zhao
  • Publication number: 20230289366
    Abstract: A synchronization system node may comprise one or more processors and a synchronization database. The synchronization database may comprise a subscriber list of a plurality of subscribers, a first buffer including a plurality of attributes in a first state, and a second buffer including the plurality of attributes in a second state. The node may be configured to receive updates for one or more of the plurality of attributes and store, to the first buffer, the updates for the one or more of the plurality of attributes to update the plurality of attributes of the first buffer to an updated first state. While receiving the updates from the publisher, the nod may publish, from the second buffer to a first subscriber of the plurality of subscribers, one or more of the plurality of attributes in the second state.
    Type: Application
    Filed: April 28, 2023
    Publication date: September 14, 2023
    Inventors: Brian D. Hoffman, Joshua Radel
  • Patent number: 11737841
    Abstract: A surgical method is provided for use with a teleoperated surgical system (surgical system), the method comprising: recording surgical instrument kinematic information indicative of surgical instrument motion produced within the surgical system during the occurrence of the surgical procedure; determining respective kinematic signatures associated with respective surgical instrument motions; producing an information structure in a computer readable storage device that associates respective kinematic signatures with respective control signals; comparing, during a performance of the surgical procedure surgical instrument kinematic information during the performance with at least one respective kinematic signature; launching, during a performance of the surgical procedure an associated respective control signal in response to a match between surgical instrument kinematics during the performance and a respective kinematic signature.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: August 29, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brent Tokarchuk, Mahdi Azizian, Joey Chau, Simon P. DiMaio, Brian D. Hoffman, Anthony M. Jarc, Henry C. Lin, Ian E. McDowall, William C. Nowlin, John D. Seaman, II, Jonathan M. Sorger
  • Publication number: 20230249354
    Abstract: A system comprises a first robotic arm adapted to support and move a tool and a second robotic arm adapted to support and move a camera configured to capture an image of a camera field of view. The system further comprises an input device, a display, and a processor. The processor is configured to display a first synthetic image including a first synthetic image of the tool. The first synthetic image of the tool includes a portion of the tool outside of the camera field of view. The processor is also configured to receive a user input at the input device and responsive to the user input, change the display of the first synthetic image to a display of a second synthetic image including a second synthetic image of the tool that is different from the first synthetic image of the tool.
    Type: Application
    Filed: March 21, 2023
    Publication date: August 10, 2023
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 11687556
    Abstract: A publishing node comprises one or more processors and a first synchronization database. The first synchronization database comprises a subscriber list of a plurality of subscribers, a plurality of first attributes and a plurality of first flags. The publishing node publishes, to a first subscriber from the plurality of subscribers, one or more of the first attributes having a respective one of the first flags set. The respective one of the first flags associates a respective one of the first attributes with the first subscriber. The publishing node also receives an error message from the first subscriber. In response to receiving the error message, the publishing node sets each of the first flags associated with the first subscriber and republishes each of the first attributes associated with each of the first flags associated with the first subscriber.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: June 27, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brian D. Hoffman, Joshua Radel
  • Patent number: 11672606
    Abstract: Methods and system perform tool tracking during minimally invasive robotic surgery. Tool states are determined using triangulation techniques or a Bayesian filter from either or both non-endoscopically derived and endoscopically derived tool state information, or from either or both non-visually derived and visually derived tool state information. The non-endoscopically derived tool state information is derived from sensor data provided either by sensors associated with a mechanism for manipulating the tool, or sensors capable of detecting identifiable signals emanating or reflecting from the tool and indicative of its position, or external cameras viewing an end of the tool extending out of the body. The endoscopically derived tool state information is derived from image data provided by an endoscope inserted in the body so as to view the tool.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 13, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brian D. Hoffman, David Q. Larkin, Giuseppe Maria Prisco, Guanghua G. Zhang, Rajesh Kumar
  • Patent number: 11638999
    Abstract: A system comprises a first robotic arm adapted to support and move a tool and a second robotic arm adapted to support and move a camera. The system also comprises an input device, a display, and a processor. The processor is configured to, in a first mode, command the first robotic arm to move the camera in response to a first input received from the input device to capture an image of the tool and present the image as a displayed image on the display. The processor is configured to, in a second mode, display a synthetic image of the first robotic arm in a boundary area around the captured image on the display, and in response to a second input, change a size of the boundary area relative a size of the displayed image.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: May 2, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao