Patents by Inventor Brian Finstad

Brian Finstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143458
    Abstract: A heat exchanger includes an outer tube having a first axial end and a second axial end, and a pressure barrier tube positioned generally concentric to and within the outer tube such that a first flowpath is defined axially through at least a portion of the outer tube and radially between the outer tube and the pressure barrier tube. A second flowpath is defined within and at least partially axially through the pressure barrier tube. The heat exchanger also includes a first plurality of fins coupled to and extending between the outer tube and the pressure barrier tube, through the first flowpath, and a second plurality of fins coupled to and extending radially inward from the pressure barrier tube, through the second flowpath. A first fluid in the first flowpath exchanges heat with a second fluid in the second flowpath via heat transfer through the first plurality of fins, the pressure barrier tube, and the second plurality of fins.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 12, 2021
    Assignee: FLEXENERGY ENERGY SYSTEMS, INC.
    Inventors: Brian Finstad, Gary Manter, Christopher David Bolin
  • Publication number: 20190301810
    Abstract: A heat exchanger includes an outer tube having a first axial end and a second axial end, and a pressure barrier tube positioned generally concentric to and within the outer tube such that a first flowpath is defined axially through at least a portion of the outer tube and radially between the outer tube and the pressure barrier tube. A second flowpath is defined within and at least partially axially through the pressure barrier tube. The heat exchanger also includes a first plurality of fins coupled to and extending between the outer tube and the pressure barrier tube, through the first flowpath, and a second plurality of fins coupled to and extending radially inward from the pressure barrier tube, through the second flowpath. A first fluid in the first flowpath exchanges heat with a second fluid in the second flowpath via heat transfer through the first plurality of fins, the pressure barrier tube, and the second plurality of fins.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 3, 2019
    Inventors: Brian Finstad, Gary Manter, Christopher David Bolin
  • Patent number: 10222129
    Abstract: A heat exchanger includes a casing having a first inlet, a first outlet, a second inlet, and a second outlet, and a plate assembly positioned between the first inlet and the first outlet and between the second inlet and the second outlet and at least partially in the casing, the plate assembly is being configured to transfer heat between a first fluid and a second fluid. The heat exchanger also includes a first plenum connecting a first side of the plate assembly and configured to direct the first fluid from first inlet to the plate assembly, and a second plenum connecting a second side of the plate assembly and configured to direct the first fluid from the plate assembly to the first outlet. An exterior of the second plenum is in contact with the second fluid, and the second plenum is configured to resiliently deflect in response to thermal expansion.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 5, 2019
    Assignee: FLEXENERGY
    Inventors: Brian Finstad, Gary Manter
  • Publication number: 20170350656
    Abstract: A heat exchanger includes a casing having a first inlet, a first outlet, a second inlet, and a second outlet, and a plate assembly positioned between the first inlet and the first outlet and between the second inlet and the second outlet and at least partially in the casing, the plate assembly is being configured to transfer heat between a first fluid and a second fluid. The heat exchanger also includes a first plenum connecting a first side of the plate assembly and configured to direct the first fluid from first inlet to the plate assembly, and a second plenum connecting a second side of the plate assembly and configured to direct the first fluid from the plate assembly to the first outlet. An exterior of the second plenum is in contact with the second fluid, and the second plenum is configured to resiliently deflect in response to thermal expansion.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Brian Finstad, Gary Manter
  • Patent number: 8857739
    Abstract: A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air through a swirler and is delivered to the combustor with a high degree of swirl motion about a central axis. This swirling mixture of reactants is conveyed downstream through a flow path that expands; the mixture reacts, and establishes an upstream central recirculation flow along the central axis. A cooling assembly is located on the swirler co-linear with the central axis in which cooler air is conveyed into the prechamber between the recirculation flow and the swirler surface.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 14, 2014
    Assignee: Flexenergy Energy Systems, Inc.
    Inventors: Yimin Huang, Shaun Sullivan, Brian Finstad, Alexander Haplau-Colan
  • Publication number: 20120079827
    Abstract: A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air through a swirler and is delivered to the combustor with a high degree of swirl motion about a central axis. This swirling mixture of reactants is conveyed downstream through a flow path that expands; the mixture reacts, and establishes an upstream central recirculation flow along the central axis. A cooling assembly is located on the swirler co-linear with the central axis in which cooler air is conveyed into the prechamber between the recirculation flow and the swirler surface.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 5, 2012
    Applicant: FLEXENERGY ENERGY SYSTEMS, INC.
    Inventors: Yimin HUANG, Shaun SULLIVAN, Brian FINSTAD, Alexander HAPLAU-COLAN
  • Patent number: 8096132
    Abstract: A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air through a swirler and is delivered to the combustor with a high degree of swirl motion about a central axis. This swirling mixture of reactants is conveyed downstream through a flow path that expands; the mixture reacts, and establishes an upstream central recirculation flow along the central axis. A cooling assembly is located on the swirler co-linear with the central axis in which cooler air is conveyed into the prechamber between the recirculation flow and the swirler surface.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: January 17, 2012
    Assignee: FlexEnergy Energy Systems, Inc.
    Inventors: Yimin Huang, Shaun Sullivan, Brian Finstad, Alexander Haplau-Colan
  • Publication number: 20090205339
    Abstract: A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air through a swirler and is delivered to the combustor with a high degree of swirl motion about a central axis. This swirling mixture of reactants is conveyed downstream through a flow path that expands; the mixture reacts, and establishes an upstream central recirculation flow along the central axis. A cooling assembly is located on the swirler co-linear with the central axis in which cooler air is conveyed into the prechamber between the recirculation flow and the swirler surface.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventors: Yimin Huang, Shaun Sullivan, Brian Finstad, Alexander Haplau-Colan
  • Patent number: 6622489
    Abstract: A method of controlling a gas booster comprises computing in an engine control unit a reference discharge pressure for the gas booster. In the engine control unit, an actual discharge pressure of the gas booster and the reference discharge pressure are compared. The engine control unit generates a correcting signal derived from the step of comparing. The engine control unit sends the correcting signal to an inlet valve in flow communication with the gas booster. The inlet valve is adjusted in response to the correcting signal. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to ascertain quickly the subject matter of the technical disclosure. The abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: September 23, 2003
    Assignee: Hybrid Power Generation Systems, LLC
    Inventors: Lorenzo Najera, Brian Finstad, Richard Annati