Patents by Inventor Brian G. Morin

Brian G. Morin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040086712
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such tape fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. These inventive tape fibers (and thus the initial films and/or tubes) require the presence of relatively high amounts of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: November 2, 2002
    Publication date: May 6, 2004
    Inventors: Brian G. Morin, Martin E. Cowan, Jack A. Smith
  • Publication number: 20040086702
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such tape fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. These inventive tape fibers (and thus the initial films and/or tubes) require the presence of relatively high amounts of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: November 2, 2002
    Publication date: May 6, 2004
    Inventors: Brian G. Morin, Martin E. Cowan, Jack A. Smith
  • Publication number: 20040084802
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such tape fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. These inventive tape fibers (and thus the initial films and/or tubes) require the presence of relatively high amounts of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: November 2, 2002
    Publication date: May 6, 2004
    Inventors: Brian G. Morin, Martin E. Cowan, Jack A. Smith
  • Publication number: 20040087233
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such tape fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. These inventive tape fibers (and thus the initial films and/or tubes) require the presence of relatively high amounts of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: September 4, 2003
    Publication date: May 6, 2004
    Inventors: Brian G. Morin, Martin E. Cowan, Jack A. Smith
  • Publication number: 20040007794
    Abstract: Improved polypropylene fibers exhibiting greatly reduced heat- and moisture-shrink problems and including certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting are disclosed herein. In such a manner, the “rigidifying” compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position. The preferred “rigidifying” compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as sodium benzoate, certain sodium and lithium phosphate salts (such as sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11).
    Type: Application
    Filed: June 30, 2003
    Publication date: January 15, 2004
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Patent number: 6668435
    Abstract: A lightweight loop pile fabric having improved particle pick-up is described. In addition, a patterned loop pile fabric is described. The fabric has a plurality of multifilament loops extending from at least one of its surfaces, with at least some of the loops being teased. In one embodiment, the loops are formed from splittable multifilament yarns which are hypersplit during the manufacturing process to form teased loops. The fabrics perform particularly well in the manufacture of wiping cloths with enhanced performance characteristics. In addition, the fabrics enable the production of patterned articles having performance characteristics similar to or exceeding those of unpatterned goods. A process for making the fabrics is also described.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: December 30, 2003
    Assignee: Milliken & Company
    Inventors: Maynard Wood, Heather Jean Hayes, Michael Paul Sasser, Brian G. Morin
  • Patent number: 6656404
    Abstract: Improved polypropylene fibers exhibiting greatly reduced heat- and moisture-shrink problems and including certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting are disclosed herein. In such a manner, the “rigidifying” compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position. The preferred “rigidifying” compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as sodium beuzoate, certain sodium and lithium phosphate salts (such as sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11).
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: December 2, 2003
    Assignee: Milliken & Company
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Publication number: 20030216498
    Abstract: This invention relates to improvements in preventing heat- and moisture-shrink problems in specific polypropylene fibers. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position.
    Type: Application
    Filed: April 24, 2003
    Publication date: November 20, 2003
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Publication number: 20030175474
    Abstract: A pile fabric suitable for use as a primary carpet fabric within a carpet construction or composite such as a cushioned carpet or tile. The primary carpet fabric includes a plurality of pile-forming yarns tufted through or adhered to a primary backing of integral dimensionally stable character. A cushioning layer of foam, felt, fabric, or other suitable cushioning material may be disposed at a position below the primary carpet fabric.
    Type: Application
    Filed: March 13, 2002
    Publication date: September 18, 2003
    Inventors: Kenneth B. Higgins, Brian G. Morin, Martin E. Cowan
  • Publication number: 20030175475
    Abstract: Constructions for surface coverings such as wall coverings or floor coverings are provided. Components for surface coverings, precursors, materials, and the like are also provided. In one embodiment, a pile fabric suitable for use as a primary carpet fabric within a carpet construction or composite such as a cushioned carpet or tile includes a plurality of pile-forming yarns tufted through or adhered to a primary backing of integral dimensionally stable character. A cushioning layer of foam, felt, fabric, or other suitable cushioning material may be disposed at a position below the primary carpet fabric.
    Type: Application
    Filed: December 20, 2002
    Publication date: September 18, 2003
    Inventors: Kenneth B. Higgins, Brian G. Morin, Martin E. Cowan
  • Publication number: 20030134118
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. Such fibers (and thus the initial films and/or tubes) require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 17, 2003
    Inventors: Brian G. Morin, Martin E. Cowan, Kenneth B. Higgins
  • Publication number: 20030134082
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. Such fibers (and thus the initial films and/or tubes) require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber after beat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 17, 2003
    Inventors: Brian G. Morin, Martin E. Cowan, Kenneth Higgins
  • Publication number: 20030127768
    Abstract: Improvements in preventing heat- and moisture-shrink problems in specific polypropylene tape fibers are provided. Such fibers are basically manufactured through the initial production of polypropylene films or tubes which are then slit into very thin, though flat (and having very high cross sectional aspect ratios) tape fibers thereafter. Such fibers (and thus the initial films and/or tubes) require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene tape fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 10, 2003
    Inventors: Brian G. Morin, Martin E. Cowan, Kenneth E. Higgins
  • Publication number: 20030069341
    Abstract: This invention relates to improvements in preventing heat- and moisture-shrink problems in specific polypropylene fibers. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 10, 2003
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Patent number: 6541554
    Abstract: This invention relates to improvements in preventing heat- and moisture-shrink problems in specific polypropylene fibers. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: April 1, 2003
    Assignee: Milliken & Company
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Patent number: 6534574
    Abstract: Compounds and compositions comprising specific metal salts of bicyclo[2.2.1 ]heptane dicarboxylate salts in order to provide highly desirable properties within polyolefin articles are provided. The inventive salts and derivatives thereof are useful as nucleating and/or clarifying agents for such polyolefin, provide excellent crystallization temperatures, stiffness, and calcium stearate compatibility within target polyolefin. Also, such compounds exhibit very low hygroscopicity and therefore excellent shelf stability as powdered or granular formulations. Polyolefin additive compositions and methods of producing polyolefin with such compounds are also contemplated within this invention.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: March 18, 2003
    Assignee: Milliken & Company
    Inventors: Xiaodong Edward Zhao, Darin L. Dotson, Brian G. Morin, Brian M. Burkhart, Martin E. Cowan, Jeffrey R. Jones
  • Publication number: 20030027907
    Abstract: This invention relates to improvements in preventing heat- and moisture-shrink problems in specific polypropylene fibers. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position.
    Type: Application
    Filed: May 17, 2001
    Publication date: February 6, 2003
    Inventors: Brian G. Morin, Nathan A. Mehl, William S. Parks
  • Publication number: 20030021944
    Abstract: A base substrate having a first side and a second side, first and second receiving loops extending from the first and second side of the base substrate, respectively, and first and second stiff loops extending from the first and second side of the base substrate, respectively. The base substrate is a flexible cloth or cloth-like material. The receiving loops are an absorbent material such as the material used in the base substrate. The stiff loops are formed of a yarn having at least one filament with a cross-section having an aspect ratio of greater than about 1.2, a corner edge, and/or at least a concave portion.
    Type: Application
    Filed: December 29, 2000
    Publication date: January 30, 2003
    Inventors: Brian G. Morin, Michael P. Sasser, Heather J. Hayes
  • Publication number: 20030008142
    Abstract: Improved polypropylene fibers exhibiting greatly reduced heat- and moisture-shrink problems are provided. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropyelene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position.
    Type: Application
    Filed: May 17, 2001
    Publication date: January 9, 2003
    Inventors: Brian G. Morin, Nathan A. Mehl, Martin E. Cowan, William S. Parks
  • Patent number: 6497954
    Abstract: This invention relates to a method of promoting the adhesion of textiles to rubber compounds through a vinyl compound plasma pre-treatment procedure and a subsequent application of resorcinol-formaldehyde latex (RFL) to the textile surface. The inventive method encompasses a process through which free radicals of compounds comprising strong carbon-carbon bonds form a film over textile films and then covalently bonded to the resin component of the RFL. Such a method thus produces an extremely strong and versatile adhesive that facilitates adhesion between rubber compounds and heretofore unusable or difficult-to-use textiles. The resultant textile/rubber composites are utilized as reinforcements within such materials as automobile tires, fan belts, conveyor belts, and the like. Such materials and composites are also contemplated within this invention.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: December 24, 2002
    Assignee: Milliken & Company
    Inventors: Brian G. Morin, Dany Felix Maria Michiels, Brenda D. Wentz