Patents by Inventor Brian Hargrave

Brian Hargrave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9067319
    Abstract: A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: June 30, 2015
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administrator, Oceaneering Space Systems
    Inventors: Jianying Shi, Brian Hargrave, Myron A Diftler
  • Patent number: 8857874
    Abstract: A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Robert J. Platt, Jr., Brian Hargrave, Scott R. Askew, Michael C. Valvo
  • Patent number: 8676382
    Abstract: A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 18, 2014
    Assignees: GM Global Technology Operations LLC, The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E. Abdallah, Brian Hargrave, Robert J. Platt, Jr.
  • Patent number: 8562049
    Abstract: A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 22, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Brian Hargrave, Scott R. Askew, Michael C. Valvo
  • Patent number: 8525460
    Abstract: An SEA architecture for controlling the torque applied by an SEA that has particular application for controlling the position of a robot link. The SEA architecture includes a motor coupled to one end of an elastic spring and a load coupled to an opposite end of the elastic spring, where the motor drives the load through the spring. The orientation of the shaft of the motor and the load are measured by position sensors. Position signals from the position sensors are sent to an embedded processor that determines the orientation of the load relative to the motor shaft to determine the torque on the spring. The embedded processor receives reference torque signals from a remote controller, and the embedded processor operates a high-speed servo loop about the desired joint torque. The remote controller determines the desired joint torque based on higher order objectives by their impedance or positioning objectives.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 3, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Matthew J. Reiland, Brian Hargrave, Robert Platt, Muhammad E. Abdallah, Frank Noble Permenter
  • Patent number: 8511964
    Abstract: A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 20, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Douglas Martin Linn, Robert O. Ambrose, Myron A. Diftler, Scott R. Askew, Robert Platt, Joshua S. Mehling, Nicolaus A. Radford, Phillip A. Strawser, Lyndon Bridgwater, Charles W. Wampler, II, Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Adam M. Sanders, David M. Reich, Brian Hargrave, Adam H. Parsons, Frank Noble Permenter, Donald R. Davis
  • Patent number: 8489239
    Abstract: A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 16, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E Abdallah, Robert J. Platt, Jr., Matthew J Reiland, Brian Hargrave, Myron A Diftler, Philip A Strawser, Chris A. Ihrke
  • Patent number: 8483877
    Abstract: A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 9, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E. Abdallah, Brian Hargrave, John D. Yamokoski, Philip A. Strawser
  • Patent number: 8467903
    Abstract: A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: June 18, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, David M. Reich, Lyndon Bridgwater, Douglas Martin Linn, Scott R. Askew, Myron A. Diftler, Robert Platt, Brian Hargrave, Michael C. Valvo, Muhammad E. Abdallah, Frank Noble Permenter, Joshua S. Mehling
  • Publication number: 20130041502
    Abstract: A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jianying Shi, Brian Hargrave, Myron A. Diftler
  • Publication number: 20120109379
    Abstract: A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicants: The U.S.A. As Represented by the Administrator of The National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Muhammad E. Abdallah, Robert J. Platt, JR., Matthew J. Reiland, Brian Hargrave, Myron A. Diftler, Philip A. Strawser, Chris A. Ihrke
  • Patent number: 8170718
    Abstract: A system and method for providing multiple priority impedance control for a robot manipulator where impedance laws are realized simultaneously and with a given order of priority. The method includes a control scheme for realizing a Cartesian space impedance objective as a first priority while also realizing a joint space impedance objective as a second priority. The method also includes a control scheme for realizing two Cartesian space impedance objectives with different levels of priority. The method includes instances of the control schemes that use feedback from force sensors mounted at an end-effector and other instances of the control schemes that do not use this feedback.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administrations
    Inventors: Muhammad E. Abdallah, Matthew J. Reiland, Robert Platt, Charles W. Wampler, II, Brian Hargrave
  • Publication number: 20120059515
    Abstract: A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Muhammad E. Abdallah, Brian Hargrave, John D. Yamokoski, Philip A. Strawser
  • Publication number: 20110295419
    Abstract: A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Muhammad E. Abdallah, Brian Hargrave, Robert J. Platt, JR.
  • Patent number: 8060250
    Abstract: A system and method for controlling tendon-driven manipulators that provide a closed-loop control of joint torques or joint impedances without inducing dynamic coupling between joints. The method includes calculating tendon reference positions or motor commands by projecting a torque error into tendon position space using a single linear operation. The method calculates this torque error using sensed tendon tensions and a reference torque and internal tension. The method can be used to control joint impedance by calculating the reference torque based on a joint position error. The method limits minimum and maximum tendon tensions by projecting the torque error into the tendon tension space and then projecting ii back into joint space.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 15, 2011
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administrations
    Inventors: Matthew J. Reiland, Robert Platt, Charles W. Wampler, II, Muhammad E. Abdallah, Brian Hargrave
  • Publication number: 20110190934
    Abstract: An SEA architecture for controlling the torque applied by an SEA that has particular application for controlling the position of a robot link. The SEA architecture includes a motor coupled to one end of an elastic spring and a load coupled to an opposite end of the elastic spring, where the motor drives the load through the spring. The orientation of the shaft of the motor and the load are measured by position sensors. Position signals from the position sensors are sent to an embedded processor that determines the orientation of the load relative to the motor shaft to determine the torque on the spring. The embedded processor receives reference torque signals from a remote controller, and the embedded processor operates a high-speed servo loop about the desired joint torque. The remote controller determines the desired joint torque based on higher order objectives by their impedance or positioning objectives.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., SPACE ADMINISTRATION
    Inventors: Matthew J. Reiland, Brian Hargrave, Robert Platt, Muhammad E. Abdallah, Frank Noble Permenter
  • Publication number: 20110067521
    Abstract: A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Douglas Martin Linn, Robert O. Ambrose, Myron A. Diftler, Scott R. Askew, Robert Platt, Joshua S. Mehling, Nicolaus A. Radford, Philip A. Strawser, Lyndon Bridgwater, Charles W. Wampler, II, Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Adam M. Sanders, David M. Reich, Brian Hargrave, Adam H. Parsons, Frank Noble Permenter, Donald R. Davis
  • Publication number: 20110068595
    Abstract: A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administraion, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Brian Hargrave, Scott R. Askew, Michael C. Valvo
  • Publication number: 20110071678
    Abstract: A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Rpresented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, David M. Reich, Lyndon Bridgwater, Douglas Martin Linn, Scott R. Askew`, Myron A. Diftler, Robert Platt, Brian Hargrave, Michael C. Valvo, Muhammad E. Abdallah, Frank Noble Permenter, Joshua S. Mehling
  • Publication number: 20100161127
    Abstract: A system and method for providing multiple priority impedance control for a robot manipulator where impedance laws are realized simultaneously and with a given order of priority. The method includes a control scheme for realizing a Cartesian space impedance objective as a first priority while also realizing a joint space impedance objective as a second priority. The method also includes a control scheme for realizing two Cartesian space impedance objectives with different levels of priority. The method includes instances of the control schemes that use feedback from force sensors mounted at an end-effector and other instances of the control schemes that do not use this feedback.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE U.S.A AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
    Inventors: Muhammad E. Abdallah, Matthew J. Reiland, Robert Platt, Charles W. Wampler, II, Brian Hargrave