Patents by Inventor Brian J. Koch

Brian J. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091369
    Abstract: A method of manufacturing a component for a reference electrode assembly according to various aspects of the present disclosure includes providing a separator having first and second opposing surfaces. The method further includes sputtering a first current collector layer to the first surface via magnetron or ion beam sputtering deposition. A porosity of the separator is substantially unchanged by the sputtering. In one aspect, the method further includes sputtering a second current collector layer to the second surface via magnetron or ion beam sputtering deposition. In one aspect, the first current collector layer includes nickel and defines a first thickness of greater than or equal to about 200 nm to less than or equal to about 300 nm and the second current collector layer includes gold and defines a second thickness of greater than or equal to about 25 nm to less than or equal to about 100 nm.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 25, 2021
    Inventors: Gayatri V. DADHEECH, Brian J. KOCH, Alfred ZHANG, Robert S. CONELL, Jing GAO
  • Publication number: 20210091424
    Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 25, 2021
    Inventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
  • Patent number: 10919408
    Abstract: System and method of controlling operation of a device having a rechargeable energy storage pack with a plurality of cells, based on propulsion loss assessment. A controller is configured to obtain a state of charge data and an open circuit voltage of the rechargeable energy storage pack. The controller is configured to obtain a state of charge disparity factor (dSOC) from a selected dataset. The state of charge disparity factor (dSOC) is defined as a difference between a minimum value of the state of charge and an average value of the state of charge of the plurality of cells. The controller is configured to control operation of the device based in part on the state of charge disparity factor (dSOC) and a plurality of parameters (Pi), including raising one or more of a plurality of flags each transmitting respective information to a user.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 16, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Azeem Sarwar, Xiangxing Lu, Ciro Spigno, Ryan B. Moulliet, Jeffrey S. Piasecki, Andrew J. Cornelli, Charles W. Wampler, II, Brian J. Koch, Margaux LeBlanc, Gus Hatoum
  • Publication number: 20200366112
    Abstract: A cell-mounted application specific integrated circuit (ASIC) system for a vehicle includes a battery pack having multiple individual battery cells. An individual cell-mounted application specific integrated circuit (ASIC) is in communication with each of the individual battery cells, with the ASIC drawing power for operation directly from the individual battery cell. A battery control unit is in communication with the ASIC. A central electronics control unit is in communication with the ASIC. The ASIC communicates wirelessly with the battery control unit and the central electronics control unit.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 19, 2020
    Inventors: Brian J. Koch, Pablo Valencia, JR., Alok Warey
  • Publication number: 20200353839
    Abstract: Presented are vehicle charging systems and control logic for provisioning vehicle grid integration (VGI) activities, methods for making/using such charging systems, and electric-drive vehicles with intelligent vehicle charging and VGI capabilities. A method of controlling charging operations of electric-drive vehicles includes a vehicle controller detecting if a vehicle is coupled to an electric vehicle supply equipment (EVSE), and determining if the vehicle's current mileage exceeds a calibrated mileage threshold. Responsive to the vehicle being connected to the EVSE and the vehicle's current mileage exceeding the calibrated mileage threshold, the controller determines the current remaining life of the vehicle's traction battery pack and the current time in service of the vehicle. The vehicle controller determines if the current remaining battery life exceeds a predicted remaining battery life corresponding to the current time in service.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 12, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: James E. Tarchinski, Brian J. Koch
  • Patent number: 10700376
    Abstract: Methods for fast-charging batteries while minimizing lithium plating (LP) comprise charging the battery in a first phase at a near-maximum charging current, subsequently charging the battery in a second phase by decreasing the charging current while charging in order to maintain the anode potential equal to or above an anode potential threshold, and subsequently charging the battery in a third phase at constant cell potential such that the cathode potential remains below a cathode potential threshold. LP can be detected by determining the derivative of the charging current and examining the derivative for smooth curves or local discontinuities, wherein a smooth curve indicates the absence of LP and a curve with a local discontinuity indicates the presence of LP. A fast-charging profile can be defined by plotting the cell potential vs. the charging current from the first phase, the second phase, and the third phase to define a fast-charging profile.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 30, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Brian J. Koch
  • Publication number: 20200180466
    Abstract: System and method of controlling operation of a device having a rechargeable energy storage pack with a plurality of cells, based on propulsion loss assessment. A controller is configured to obtain a state of charge data and an open circuit voltage of the rechargeable energy storage pack. The controller is configured to obtain a state of charge disparity factor (dSOC) from a selected dataset. The state of charge disparity factor (dSOC) is defined as a difference between a minimum value of the state of charge and an average value of the state of charge of the plurality of cells. The controller is configured to control operation of the device based in part on the state of charge disparity factor (dSOC) and a plurality of parameters (Pi), including raising one or more of a plurality of flags each transmitting respective information to a user.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Azeem Sarwar, Xiangxing Lu, Ciro Spigno, Ryan B. Moulliet, Jeffrey S. Piasecki, Andrew J. Cornelli, Charles W. Wampler, II, Brian J. Koch, Margaux LeBlanc, Gus Hatoum
  • Patent number: 10673102
    Abstract: A device for performing electrochemical analysis of electrochemical cells includes a housing, upper and lower stack holders, and first, second, and third current collectors. The housing includes an inner chamber that can be hermetically sealed and a central axis extending through the inner chamber. The upper and lower stack holders are disposed within the inner chamber and cooperate to define an electrode stack chamber for housing a negative electrode, a positive electrode, and a center-mounted reference electrode. The first, second, and third current collectors are at least partially disposed in the inner chamber. The first current collector can be electrically connected to a first side of the negative electrode and an external circuit. The second current collector can be in electrical contact with the positive electrode and the external circuit. The third cylindrical body can be in electrical contact with the center-mounted reference electrode and the external circuit.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 2, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kevin B. Rober, Brian J. Koch, Robert S. Conell
  • Patent number: 10622684
    Abstract: A battery cell system and an associated monitoring system is provided which includes at least an anode, a cathode, a separator formed from a base layer, first and second contacts and a reference component. The anode and cathode are disposed in a lithium ion non-aqueous solution within a housing. The base layer of the separator includes a first side and a second side. The base layer is operatively configured to separate the anode and the cathode within the housing. The first contact of the separator is affixed to the first side of the base layer between the base layer and an anode. The second contact is affixed to the second side of the base layer with the reference component disposed on the second contact.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brian J Koch, Ashley McAllister, Robert S Conell
  • Patent number: 10589629
    Abstract: A number of variations may include a product comprising: an electrochemical device comprising an anode and a cathode, and at least one sensor comprising a plurality of strain sensing components and at least one temperature sensing component wherein each of the anode and the cathode comprises at least one strain sensing component comprising an optical fiber comprising at least one grating, wherein the at least one sensor is constructed and arranged to provide measurements that derive both state of charge and temperature of the anode and the cathode simultaneously.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles W. Wampler, II, Brian J. Koch, Mark W. Verbrugge
  • Publication number: 20200020907
    Abstract: A method of forming a separator for a lithium-ion battery includes arranging a polymer film in contact with a sacrificial layer to form a cutting stack. The method includes disposing the cutting stack between a first vitreous substrate and a second vitreous substrate. The method includes applying an infrared laser to the cutting stack through the first vitreous substrate to generate heat at the sacrificial layer. The method also includes transferring heat from the sacrificial layer to the polymer film to thereby cut out a portion of the polymer film and form the separator. A method of cutting a polymer film and a cutting system are also explained.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 16, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Hongliang Wang, Brian J. Koch, Michael P. Balogh, Sean R. Wagner
  • Publication number: 20190379090
    Abstract: During the charging of lithium-ion batteries, comprising graphite anode particles, the goal is to intercalate lithium into the anode materials as LiC6. But it is possible to conduct the charging process at a rate that lithium is undesirably plated, undetected, as lithium metal on the particles of graphite. During an open-circuit period of battery operation, immediately following such a charging period, the presence of lithium plating can be detected, using a computer-based monitoring system, by continually measuring the cell potential (Vcell) over a brief period of open-circuit time, fitting the open-circuit voltage data to a best cubic polynomial fit, and then determining dVcell/dt (mV/s) from the polynomial fit over a like period of time. It is found that the presence of a maximum or a minimum in the derivative curve (a local minimum) reliably correlates with plated lithium on the graphite particles of the anode.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 12, 2019
    Inventors: Mark W. Verbrugge, Charles W. Wampler, Daniel R. Baker, Raghunathan K, Brian J. Koch, Alfred Zhang
  • Patent number: 10446883
    Abstract: Methods for fast-charging battery packs having at least one lithium battery cell with an anode, a cathode, and a reference electrode (RE) comprise charging the battery in a first phase by maximizing charging current, subsequently charging the battery in a second phase by decreasing the charging current in response to an anode potential (AP) determined by a RE to maintain the AP at or above an AP threshold, and subsequently charging the battery in a third phase by decreasing the charging current in response to the cathode potential (CP) determined by the RE such that the CP is maximized without exceeding the cathode potential threshold. A controller can determine anode potential or cathode potential in real time using a cell potential signal and a cathode RE signal or an anode RE signal, respectively. The AP threshold is the AP above which substantially no lithium plating occurs.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: October 15, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ciro A. Spigno, Brian J. Koch, Ryan B. Moulliet
  • Publication number: 20190308630
    Abstract: A discharge module is configured to determine a change in capacity of the battery between: (i) a measurement of a first open circuit voltage (OCV) of a battery of a vehicle; and (ii) a measurement of a second OCV of the battery. A lookup table is stored in memory and includes reference states of charge (SOCs) indexed by reference OCVs and reference capacities. A relationship module is configured to: from the lookup table, identify a first set of the reference SOCs associated with the first OCV and the reference capacities, respectively; from the lookup table, identify a second set of the reference SOCs associated with the second OCV and the reference capacities, respectively; determine changes in SOC associated with the reference capacities; determine changes in capacity; and determine an equation that relates changes in capacity to capacity based on the changes in capacity and the reference capacities, respectively.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Inventors: Raghunathan K, Ramona Y. Ying, Brian J. Koch, Charles W. Wampler, II
  • Patent number: 10439256
    Abstract: A reference structure and a separator assembly is provided. The separator assembly provides a base layer, a first contact, an optional second contact and a reference component which may be implemented in various applications. The base layer includes a first side and a second side. The first contact is affixed on the first side of the base layer between the base layer and an anode. The second contact is affixed on the second side of the base layer. A reference component is affixed to the second side of the base layer and the optional second contact, if implemented. The reference structure includes a semi-permeable reference component affixed or coupled to a base element.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 8, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Brian J Koch, Ashley McAllister, Robert S Conell
  • Patent number: 10418622
    Abstract: Disclosed are battery management systems with control logic for battery state estimation (BSE), methods for making/using/assembling a battery cell with a reference electrode, and electric drive vehicles equipped with a traction battery pack and BSE capabilities. In an example, a battery cell assembly includes a battery housing with an electrolyte composition stored within the battery housing. The electrolyte composition transports ions between working electrodes. A first working (anode) electrode is attached to the battery housing in electrochemical contact with the electrolyte composition. Likewise, a second working (cathode) electrode is attached to the battery housing in electrochemical contact with the electrolyte composition. A reference electrode is interposed between the first and second working electrodes, placed in electrochemical contact with the electrolyte composition.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 17, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Brian J. Koch, Charles W. Wampler, Mark W. Verbrugge, Daniel R. Baker
  • Publication number: 20190280345
    Abstract: Methods for fast-charging battery packs having at least one lithium battery cell with an anode, a cathode, and a reference electrode (RE) comprise charging the battery in a first phase by maximizing charging current, subsequently charging the battery in a second phase by decreasing the charging current in response to an anode potential (AP) determined by a RE to maintain the AP at or above an AP threshold, and subsequently charging the battery in a third phase by decreasing the charging current in response to the cathode potential (CP) determined by the RE such that the CP is maximized without exceeding the cathode potential threshold. A controller can determine anode potential or cathode potential in real time using a cell potential signal and a cathode RE signal or an anode RE signal, respectively. The AP threshold is the AP above which substantially no lithium plating occurs.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Ciro A. Spigno, Brian J. Koch, Ryan B. Moulliet
  • Patent number: 10408883
    Abstract: Evaluation of a DC power source can include communication with a voltmeter that is arranged to monitor electrical potential across positive and negative electrodes. The method includes determining a full-cell open-circuit voltage (“OCV”), an associated positive half-cell OCV, and an associated negative half-cell OCV at a start-of-life point of the DC power source. A lithium balance model is executed to determine a plurality of beginning states associated with an electrode alignment of the DC power source. An in-use state for the full-cell OCV is determined. An optimization routine is executed employing the lithium balance model to determine in-use states associated with the electrode alignment of the DC power source based upon the in-use state for the full-cell OCV and the beginning states associated with electrode alignment. A negative-to-positive (“N/P”) ratio is determined based upon the in-use states, and battery life is evaluated based upon the N/P ratio.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: September 10, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Raghunathan K, Brian J. Koch
  • Publication number: 20190237822
    Abstract: A device for performing electrochemical analysis of electrochemical cells includes a housing, upper and lower stack holders, and first, second, and third current collectors. The housing includes an inner chamber that can be hermetically sealed and a central axis extending through the inner chamber. The upper and lower stack holders are disposed within the inner chamber and cooperate to define an electrode stack chamber for housing a negative electrode, a positive electrode, and a center-mounted reference electrode. The first, second, and third current collectors are at least partially disposed in the inner chamber. The first current collector can be electrically connected to a first side of the negative electrode and an external circuit. The second current collector can be in electrical contact with the positive electrode and the external circuit. The third cylindrical body can be in electrical contact with the center-mounted reference electrode and the external circuit.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 1, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kevin B. Rober, Brian J. Koch, Robert S. Conell
  • Patent number: 10345385
    Abstract: Systems and methods are disclosed for estimating a state of a battery system such as a current-limited state of power and/or a voltage-limited state of power using a battery system model incorporating a nonlinear resistance element. Parameters of elements included in a battery cell model associated with a nonlinear resistance of a battery cell may be directly parameterized and used in connection with state estimation methods. By accounting for the nonlinear effect, embodiments of the disclosed systems and methods may increase available battery power utilized in connection with battery system control and/or management decisions over a larger window of operating conditions.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 9, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Charles W Wampler, Mark W Verbrugge, Brian J Koch, Patricia M Laskowsky