Patents by Inventor Brian J. Taylor

Brian J. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950787
    Abstract: Cutting instruments and related methods are disclosed herein in which the diameter of the retrograde cutting blade can be adjusted to any of a plurality of diameter settings, allowing the same instrument to be used to form holes of different diameters. The limit diameter can be preset such that, during the cutting operation, the user need not be concerned with selecting the appropriate diameter, but rather can simply deploy the cutting blade until the preset limit is reached. Cutting instruments are also disclosed in which the retrograde cutting blade is distinct from the forward drilling tip and protected within a cavity formed in the body of the instrument when not in use, as are instruments in which the user is given visual and/or tactile feedback to confirm desired positioning of the cutting blade.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: April 9, 2024
    Assignee: Medos International Sarl
    Inventors: José E. Lizardi, Kevin J. Zylka, Scott Presbrey, Michael S. Varieur, Dean C. Taylor, Brian D. Busconi
  • Publication number: 20240103645
    Abstract: A computer input system includes a mouse including a housing having an interior surface defining an internal volume and a sensor assembly disposed in the internal volume. A processor is electrically coupled to the sensor assembly and a memory component having electronic instructions stored thereon that, when executed by the processor, causes the processor to determine an orientation of the mouse relative to a hand based on a touch input from the hand detected by the sensor assembly. The mouse can also have a circular array of touch sensors or lights that detect hand position and provide orientation information to the user.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Bart K. Andre, Brian T. Gleeson, Kristi E. Bauerly, William D. Lindmeier, Matthew J. Sundstrom, Geng Luo, Seung Wook Kim, Evangelos Christodoulou, Megan M. Sapp, Kainoa Kwon-Perez, David H. Bloom, Steven J. Taylor, John B. Morrell, Maio He, Hamza Kashif
  • Publication number: 20240103656
    Abstract: An input device, such as a mouse, can include a housing defining an exterior grip portion and an internal volume, a sensor assembly disposed in the internal volume, and an emitter electrically coupled to the sensor assembly. In response to the sensor assembly detecting a first touch input on the housing, the emitter sends a first signal including information regarding an angular position of the grip portion. In response to the sensor assembly detecting a second touch input on the housing, the emitter sends a second signal including information regarding a direction of a force exerted on the housing from the second touch input.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Bart K. Andre, Brian T. Gleeson, Kristi E. Bauerly, William D. Lindmeier, Matthew J. Sundstrom, Geng Luo, Seung Wook Kim, Evangelos Christodoulou, Megan M. Sapp, Kainoa Kwon-Perez, David H. Bloom, Steven J. Taylor
  • Publication number: 20240103643
    Abstract: A computer system can include an input device having a housing defining an internal volume. The housing can include a grip portion and a base portion defining an aperture. The computer system can also include a tilt sensor disposed in the internal volume, a position sensor disposed at the aperture, and a processor. The processor can be electrically coupled to the position sensor, the tilt sensor, and a memory component storing electronic instructions that, when executed by the processor, cause the processor to receive a first input from the tilt sensor, receive a second input from the position sensor, determine, based on the first and second inputs, if the base is in contact with a support surface and an angle of the base relative to the support surface. The processor can also output a signal based on the angle if the base is in contact with the support surface.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Megan M. Sapp, Brian T. Gleeson, Steven J. Taylor, David H. Bloom, Maio He, Seung Wook Kim, Evangelos Christodoulou, Kristi E. Bauerly, Geng Luo, Bart K. Andre
  • Patent number: 11918234
    Abstract: Devices, systems, and methods are provided for ligament repair procedures, and can be used to establish a location and trajectory for forming a bone tunnel in bone. One exemplary embodiment of a surgical guide for using in a ligament repair procedure includes a guide arm and a carriage that can be selectively locked along the guide arm to define an angle of the bone tunnel. The guide arm also defines a location of a distal end of the bone tunnel. In some embodiments the carriage is configured to have a bullet side-loaded into it, and the bullet can be used to define a location of a proximal end of the bone tunnel. The present disclosure also provides for a gage that limits the distance a drill pin that drills the bone tunnel can travel. A variety of other, devices, systems, and methods are also provided.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: March 5, 2024
    Assignee: Medos International Sarl
    Inventors: Lauren Ardito, Gary Fernandes, Michael S. Varieur, Kevin J. Zylka, Scott Presbrey, Carl Livorsi, Franciso A. Amaral, Brian D. Busconi, Dean C. Taylor
  • Patent number: 11810412
    Abstract: A method includes sending a first safety instruction to a machine in response to, within an entry window of time, receiving an open alert that a movable barrier is in an open state, where the movable barrier is at an entry point of an enclosure protecting personnel from the machine, receiving tag information of a person from a reader at the movable barrier, and confirming that the tag information belongs to a person authorized to enter the enclosure. The method includes sending a second safety instruction to the machine in response to, within the entry window of time, receiving the open alert, and without receiving tag information or confirming that the tag information belongs to a person authorized to enter the enclosure. The first and second safety instructions are different and the first safety instruction is less restrictive than the second safety instruction in terms of actions to prevent injury.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: November 7, 2023
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Kevin Zomchek, Yongyao Cai, Rebecca R. Jaeger, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Wayne R. Foster
  • Patent number: 11703849
    Abstract: A method for predicting end-of-life for a component includes determining a baseline lifetime model for a component connected to a machine functional safety system. The component is part of a system with physical devices. The method includes monitoring environmental conditions and usage conditions of the component and modifying the baseline lifetime model based on the monitored environmental and usage conditions to produce a modified lifetime model for the component. The method includes tracking a lifetime progress of the component with respect to the modified lifetime model and sending an alert in response to lifetime progress of the component reaching a lifetime threshold associated with the modified lifetime model.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: July 18, 2023
    Assignee: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Yongyao Cai, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Patent number: 11636752
    Abstract: A method for derivation of a machine signature includes receiving sensor information from a primary sensor, where the primary sensor is positioned to receive information from a portion of an industrial operation, and receiving sensor information from one or more secondary sensors. The secondary sensors are arranged to provide additional information about the industrial operation indicative of current operating conditions of the industrial operation. The method includes using the sensor information from the secondary sensors and machine learning to determine if the portion of the industrial operation is operating in a normal condition and, in response to determining that the portion of the industrial operation is operating normally, using sensor information from the primary sensor during the normal operating condition to derive a primary sensor signature for the sensor information from the primary sensor.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: April 25, 2023
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Yongyao Cai, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Publication number: 20230040166
    Abstract: A method includes sending a first safety instruction to a machine in response to, within an entry window of time, receiving an open alert that a movable barrier is in an open state, where the movable barrier is at an entry point of an enclosure protecting personnel from the machine, receiving tag information of a person from a reader at the movable barrier, and confirming that the tag information belongs to a person authorized to enter the enclosure. The method includes sending a second safety instruction to the machine in response to, within the entry window of time, receiving the open alert, and without receiving tag information or confirming that the tag information belongs to a person authorized to enter the enclosure. The first and second safety instructions are different and the first safety instruction is less restrictive than the second safety instruction in terms of actions to prevent injury.
    Type: Application
    Filed: October 27, 2022
    Publication date: February 9, 2023
    Inventors: Kevin Zomchek, Yongyao Cai, Rebecca R. Jaeger, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Wayne R. Foster
  • Patent number: 11527122
    Abstract: A component includes a housing mounted at an entry point of an enclosure protecting a machine. The component includes a first RFID sensor, in the housing, that reads a first RFID tag in close proximity to the first RFID sensor indicating a closed status of a movable barrier of the enclosure at the entry point. Opening of the movable barrier allows entry to the enclosure. The component includes a second RFID sensor, in the housing, that reads a second RFID tag of an authorized person. The component includes a barrier access module that sends an open alert that the movable barrier is in an open state in response to the first RFID sensor not being close enough to read the first RFID tag, and an identification module that sends tag information unique to a person from the second RFID tag.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: December 13, 2022
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Kevin Zomchek, Yongyao Cai, Rebecca R. Jaeger, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Wayne R. Foster
  • Publication number: 20220342408
    Abstract: A method for using sensor data and operational data of an industrial process to identify problems includes gathering sensor data from one or more sensors sensing conditions on equipment of an industrial process, receiving command information about operational commands issued to the equipment of the industrial process, and for each sensor of the one or more sensors, comparing the sensor data with signature information for the sensor. The signature information for the sensor is relevant for operational commands issued to the equipment. The method includes determining if the sensor data of a sensor of the one or more sensors exceeds the signature information corresponding to the sensor, locating a problem with a piece of equipment of the industrial process monitored by the sensor of the one or more sensors based on the sensor data exceeding the signature information for the sensor and issuing an alert reporting the problem.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Inventors: Yongyao Cai, Suresh R. Nair, Timothy P. Wolfe, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Rebecca R. Jaeger, Wayne R. Foster
  • Publication number: 20220343748
    Abstract: A method for derivation of a machine signature includes receiving sensor information from a primary sensor, where the primary sensor is positioned to receive information from a portion of an industrial operation, and receiving sensor information from one or more secondary sensors. The secondary sensors are arranged to provide additional information about the industrial operation indicative of current operating conditions of the industrial operation. The method includes using the sensor information from the secondary sensors and machine learning to determine if the portion of the industrial operation is operating in a normal condition and, in response to determining that the portion of the industrial operation is operating normally, using sensor information from the primary sensor during the normal operating condition to derive a primary sensor signature for the sensor information from the primary sensor.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Inventors: Yongyao Cai, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Publication number: 20220343709
    Abstract: A component includes a housing mounted at an entry point of an enclosure protecting a machine. The component includes a first RFID sensor, in the housing, that reads a first RFID tag in close proximity to the first RFID sensor indicating a closed status of a movable barrier of the enclosure at the entry point. Opening of the movable barrier allows entry to the enclosure. The component includes a second RFID sensor, in the housing, that reads a second RFID tag of an authorized person. The component includes a barrier access module that sends an open alert that the movable barrier is in an open state in response to the first RFID sensor not being close enough to read the first RFID tag, and an identification module that sends tag information unique to a person from the second RFID tag.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Inventors: Kevin Zomchek, Yongyao Cai, Rebecca R. Jaeger, Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Burt Sacherski, Ashley M. Killian, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Wayne R. Foster
  • Publication number: 20220214675
    Abstract: A method for risk assessment violation monitoring during a functional safety process includes receiving parameters from a risk assessment of a portion of a system with physical devices. The parameters of the risk assessment are applicable to a safety device of a machine safety system. The safety device is configured to prevent a hazardous condition in the system. The method includes detecting a change of a condition of the safety device. The condition is indicative of a potential safety issue affecting operation of the machine safety system. The method includes comparing parameters related to the change of the condition of the safety device with the parameters from the risk assessment and sending an alert in response to determining that the change of the condition of the safety device results in a violation of the risk assessment.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Inventors: Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Yongyao Cai, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Publication number: 20220214316
    Abstract: A method for monitoring machine operation for various machine speed and loads includes measuring vibration information at a sensor associated with a machine and an associated machine speed. The machine is a rotating machine. The method includes performing an operational frequency analysis of the vibration information and comparing results from the operational frequency analysis with a vibration signature for the machine. The vibration signature is for a machine speed that matches the machine speed of the measured vibration information. The vibration signature is one of several vibration signatures for the machine where each is for a different machine speed. The method includes identifying a potential failure mode based on a frequency range where the frequency analysis of the measured vibration information exceeds, by a threshold amount, the vibration signature of the plurality of vibration signatures that matches the machine speed, and transmitting an alert comprising the identified potential failure mode.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 7, 2022
    Inventors: Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Yongyao Cai, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Publication number: 20220214680
    Abstract: A method for predicting end-of-life for a component includes determining a baseline lifetime model for a component connected to a machine functional safety system. The component is part of a system with physical devices. The method includes monitoring environmental conditions and usage conditions of the component and modifying the baseline lifetime model based on the monitored environmental and usage conditions to produce a modified lifetime model for the component. The method includes tracking a lifetime progress of the component with respect to the modified lifetime model and sending an alert in response to lifetime progress of the component reaching a lifetime threshold associated with the modified lifetime model.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 7, 2022
    Inventors: Suresh R. Nair, Lee A. Lane, Brian J. Taylor, Yongyao Cai, Burt Sacherski, Ashley M. Killian, Kevin Zomchek, Michelle L. Poublon, Linxi Gao, Timothy P. Wolfe, Robecca R. Jaeger, Wayne R. Foster
  • Patent number: 11346498
    Abstract: A component for light curtain alignment includes a light intensity receiver that receives a plurality of light intensity signals from beam receivers of a receiver unit of a light curtain. The light curtain includes a transmitter unit with beam transmitters arranged linearly on the transmitter unit. The light curtain includes the receiver unit with the plurality of beam receivers arranged linearly. Each beam receiver is configured to receive light from a corresponding beam transmitter. The component includes a light intensity transmitter configured to transmit, from the light curtain, the plurality of light intensity signals received by the light intensity receiver, where each light intensity signal is from one or more beam receivers, and a trip transmitter that transmits a trip signal in response to determining that a light intensity signal from a beam receiver of the plurality of beam receivers is below a trip threshold.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: May 31, 2022
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Suresh R. Nair, Burt Sacherski, Yongyao Cai, Lee A. Lane, Brian J. Taylor, Ashley M. Killian, Kevin Zomchek, Michelle Poublon, Linxi Gao, Timothy P. Wolfe, Rebecca R. Jaeger, Wayne R. Foster
  • Patent number: 11143055
    Abstract: A control system for a gas turbine engine is disclosed. In embodiments, control system includes a controller and a high speed recorder. The controller obtains a sensor value from a sensor connected to the gas turbine engine and publishes a tag that includes the type of event, the sensor value, and a timestamp. The high speed recorder checks the tag for an overspeed event. If an overspeed event is detected, the high speed recorder records values provided by the tag.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 12, 2021
    Assignee: Solar Turbines Incorporated
    Inventors: Eduardo Bravo, Brian J. Taylor, John S. Bowen, Bruno E. Struck, Hyun D. Kim, Frederick B. Lorenz
  • Publication number: 20210010388
    Abstract: A control system for a gas turbine engine is disclosed. In embodiments, control system includes a controller and a high speed recorder. The controller obtains a sensor value from a sensor connected to the gas turbine engine and publishes a tag that includes the type of event, the sensor value, and a timestamp. The high speed recorder checks the tag for an overspeed event. If an overspeed event is detected, the high speed recorder records values provided by the tag.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 14, 2021
    Applicant: Solar Turbines Incorporated
    Inventors: Eduardo Bravo, Brian J. Taylor, John S. Bowen, Bruno E. Struck, Hyun D. Kim, Frederick B. Lorenz
  • Patent number: 10143097
    Abstract: A housing for an industrial sensor comprises integral U-shaped pockets configured to engage with attachment features of a complementary mounting bracket. The bracket comprises an overhang feature on a second end and a snap feature on an opposing first end. The housing can be mounted to the bracket by inserting a mounting boss formed within one of the U-shaped pockets underneath the overhang feature of the bracket, and pressing the housing against the bracket to cause the snap feature to engage with another mounting boss formed in the other U-shaped pocket. These mounting features allow the housing to be mounted easily and quickly without the use for additional tools. The housing can also be quickly removed from the bracket by pressing an extended tab near the snap feature to facilitate disengagement of the housing from the bracket.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: November 27, 2018
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Roberto S. Santos, Steven R. Tambeau, Brian J. Taylor, Burt Sacherski, Elik I. Fooks, Suresh R. Nair, Michael Flannery, Scott Wakefield