Patents by Inventor Brian L. Roberts

Brian L. Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974888
    Abstract: A system, method, and air purification device. Air is taken in from an environment into the air purification system. The air is filtered with a primary filter. The filtered air is treated with vacuum ultraviolet radiation in a primary reaction chamber to generate irradiated air. The irradiated air is treated with ultraviolet-C radiation in a secondary reaction chamber to remove ozone and neutralize contaminants to generate purified air. The purified air is emitted back into the environment from the air purification system.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: May 7, 2024
    Assignee: ATMENBIO, LLC
    Inventors: Justin L. Roberts, Brian Dean Owens
  • Patent number: 10842563
    Abstract: An electrosurgical generator is disclosed. The generator includes an RF output stage configured to generate at least one electrosurgical waveform including a plurality of cycles; at least one sensor coupled to the RF output stage, the at least one sensor configured to measure a voltage and a current of the at least one electrosurgical waveform; and a controller coupled to the at least one sensor and the RF output stage, the controller including a proportional-integral-derivative controller having at least one of voltage limiter or a current limiter, the proportional-integral-derivative controller configured to saturate the RF output stage based on voltage-current characteristics of the RF output stage.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 24, 2020
    Assignee: COVIDIEN LP
    Inventors: James A. Gilbert, Joshua H. Johnson, Eric J. Larson, Brian L. Roberts, Braddon M. Van Slyke
  • Patent number: 10653471
    Abstract: Controlling a level of electrosurgical energy provided to tissue based on detected arcing patterns or impedance changes. The drag force imposed on an electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing and analyzing voltage and/or current waveforms of the electrosurgical energy. The current and/or voltage waveform analysis may involve calculating impedance based on the voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters. The waveform analysis may involve determining a normalized difference or the average phase difference between the voltage and current waveforms.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 19, 2020
    Assignee: COVIDIEN LP
    Inventors: Robert H. Wham, James A. Gilbert, Craig A. Keller, Brian L. Roberts
  • Publication number: 20170065328
    Abstract: Controlling a level of electrosurgical energy provided to tissue based on detected arcing patterns or impedance changes. The drag force imposed on an electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing and analyzing voltage and/or current waveforms of the electrosurgical energy. The current and/or voltage waveform analysis may involve calculating impedance based on the voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters. The waveform analysis may involve determining a normalized difference or the average phase difference between the voltage and current waveforms.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: ROBERT H. WHAM, JAMES A. GILBERT, CRAIG A. KELLER, BRIAN L. ROBERTS
  • Patent number: 9498275
    Abstract: Controlling a level of electrosurgical energy provided to tissue based on detected arcing patterns or impedance changes. The drag force imposed on an electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing and analyzing voltage and/or current waveforms of the electrosurgical energy The current and/or voltage waveform analysis may involve calculating impedance based on the voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters. The waveform analysis may involve determining a normalized difference or the average phase difference between the voltage and current waveforms.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: November 22, 2016
    Assignee: COVIDIEN LP
    Inventors: Robert H. Wham, James A. Gilbert, Craig A. Keller, Brian L. Roberts
  • Publication number: 20140276753
    Abstract: The systems and methods of the present disclosure detect arcing patterns or impedance changes and adjust the level of electrosurgical energy provided to tissue based on the detected arcing patterns or impedance changes. In embodiments, the drag force imposed on the electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the detected arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing voltage and/or current waveforms of the electrosurgical energy and analyzing the sensed voltage and/or current waveforms. The current and/or voltage waveform analysis may involve calculating impedance based on the sensed voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: COVIDIEN LP
    Inventors: ROBERT H. WHAM, JAMES A. GILBERT, CRAIG A. KELLER, BRIAN L. ROBERTS
  • Publication number: 20140276754
    Abstract: An electrosurgical generator is disclosed. The generator includes an RF output stage configured to generate at least one electrosurgical waveform including a plurality of cycles; at least one sensor coupled to the RF output stage, the at least one sensor configured to measure a voltage and a current of the at least one electrosurgical waveform; and a controller coupled to the at least one sensor and the RF output stage, the controller including a proportional-integral-derivative controller having at least one of voltage limiter or a current limiter, the proportional-integral-derivative controller configured to saturate the RF output stage based on voltage-current characteristics of the RF output stage.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 18, 2014
    Applicant: COVIDIEN LP
    Inventors: JAMES A. GILBERT, JOSHUA H. JOHNSON, ERIC J. LARSON, BRIAN L. ROBERTS, BRADDON M. VAN SLYKE
  • Patent number: 5345005
    Abstract: In one embodiment, the invention relates to a catalyst in powdered form which comprises a major amount of the oxides of copper and zinc, and a minor amount of aluminum oxide wherein the pore volume of pores of said catalysts having a diameter between about 120 and about 1000 .ANG. is at least about 40% of the total pore volume. In another embodiment, the invention relates to a process for preparing hydrogenation catalysts comprising the oxides of copper, zinc and aluminum which comprises the steps of(A) preparing a first aqueous solution containing at least one water-soluble copper salt and at least one water-soluble zinc salt;(B) preparing a second solution containing at least one water-soluble basic aluminum salt and at least one alkaline precipitating agent;(C) mixing the first and second solutions whereby an insoluble solid is formed;(D) recovering the insoluble solid.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: September 6, 1994
    Assignee: Engelhard Corporation
    Inventors: Deepak S. Thakur, Brian L. Roberts, Thomas J. Sullivan, Anita L. Vichek
  • Patent number: 4682693
    Abstract: A packaging tray capable of individually and separately supporting a layer of fruit for transport and point of sale display has a plurality of flexible hammock-like recesses formed in a supporting layer. This supporting layer is held above the base of a carton by supports associated with each "hammock-like recess". The flexible recesses allow fruit of varying sizes or shapes to be accommodated within a single layer.
    Type: Grant
    Filed: February 4, 1986
    Date of Patent: July 28, 1987
    Inventors: Michael S. Moffitt, Brian L. Roberts