Patents by Inventor Brian M. Sager

Brian M. Sager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080142084
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 19, 2008
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20080135811
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20080138501
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20080135099
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20080135812
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20080124831
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: June 19, 2007
    Publication date: May 29, 2008
    Inventors: Matthew R. Robinson, Jeroen K. J. Van Duren, Craig Leidholm, Brian M. Sager
  • Publication number: 20080121277
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes is particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: June 19, 2007
    Publication date: May 29, 2008
    Inventors: Matthew R. Robinson, Jeroen K. J. Van Duren, Brian M. Sager
  • Patent number: 7306823
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: September 18, 2004
    Date of Patent: December 11, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 7291782
    Abstract: Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling, material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: November 6, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen, Klaus Petritsch, Greg Smestad, Jacqueline Fidanza, Gregory A. Miller, Dong Yu
  • Patent number: 7253017
    Abstract: Charge splitting networks for optoelectronic devices may be fabricated using a nanostructured porous film, e.g., of SiO2, as a template. The porous film may be fabricated using surfactant temptation techniques. Any of a variety of semiconducting materials including semiconducting metals and metal oxides (such as TiO2, CdSe, CdS, CdTe, or CuO) may be deposited into the pores of the porous template film. After deposition, the template film may be removed by controlled exposure to acid or base without disrupting the semiconducting material leaving behind a nanoscale network grid. Spaces in the network grid can then be filled with complementary semiconducting material, e.g., a semiconducting polymer or dye to create a exciton-splitting and charge transporting network with superior optoelectronic properties for an optoelectronic devices, particularly photovoltaic devices.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: August 7, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Martin R. Roscheisen, Brian M. Sager, Jacqueline Fidanza, Klaus Petritsch, Gregory A. Miller, Dong Yu
  • Patent number: 7247346
    Abstract: Methods and apparatus for the rapid and parallel synthesis of optoelectronic cell devices and for the high-throughput screening of such devices for useful properties are disclosed. The methods comprise the parallel synthesis of arrays of optoelectronic devices fabricated within an addressable sample-holding matrix. Each optoelectronic device is created and tested within an addressable sample-holder in the fabrication device.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: July 24, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen, Klaus Petritsch
  • Patent number: 7227066
    Abstract: Methods for passivating crystalline grains in an active layer for an optoelectronic device and optoelectronic devices having active layers with passivated crystalline grains are disclosed. Crystalline grains of an active layer material and/or window layer material are formed within the nanotubes of an insulating nanotube template. The dimensions of the nanotubes correspond to the dimensions of a crystalline grain formed by the deposition technique used to form the grains. A majority of the surface area of these grains is in contact with the wall of the nanotube template rather than with other grains.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 5, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Martin R. Roscheisen, Brian M. Sager
  • Patent number: 7045205
    Abstract: A nanostructured apparatus may include a mesoporous template having an array of regularly-spaced pores. One or more layers of material may conformally coat the walls to a substantially uniform thickness. Such an apparatus can be used in a variety of devices including optoelectronic devices, e.g., light emitting devices (such as LEDs, and lasers) and photovoltaic devices (such as solar cells) optical devices (luminescent, electro-optic, and magnetooptic waveguides, optical filters, optical switches, amplifies, laser diodes, multiplexers, optical couplers, and the like), sensors, chemical devices (such as catalysts) and mechanical devices (such as filters for filtering gases or liquids).
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: May 16, 2006
    Assignee: Nanosolar, Inc.
    Inventor: Brian M. Sager
  • Patent number: 6946597
    Abstract: Photovoltaic devices, such as solar cells, and methods for their manufacture are disclosed. A device may be characterized by an architecture where two more materials having different electron affinities are regularly arrayed such that their presence alternates within distances of between about 1 nm and about 100 nm. The materials are present in a matrix based on a porous template with an array of template pores. The porous template is formed by anodizing a layer of metal. A photovoltaic device may include such a porous template disposed between a base electrode and a transparent conducting electrode. A first charge-transfer material fills the template pores, A second (complementary) charge-transfer material fills additional space not occupied by the first charge-transfer material.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: September 20, 2005
    Assignee: Nanosular, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen, Klus Petritsch, Karl Pichler, Jacqueline Fidanza, Dong Yu
  • Patent number: 6852920
    Abstract: Nano-architected/assembled solar cells and methods for their manufacture are disclosed. The solar cells comprise oriented arrays of nanostructures wherein two or more different materials are regularly arrayed and wherein the presence of two different materials alternates. The two or more materials have different electron affinities. The two materials may be in the form of matrixed arrays of nanostructures. The presence of the two different materials may alternate within distances of between about 1 nm and about 100 nm. An orientation can be imposed on the array, e.g. through solution deposition surfactant templation or other methods.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: February 8, 2005
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen
  • Publication number: 20040250848
    Abstract: Nano-architected/assembled solar cells and methods for their manufacture are disclosed. The solar cells comprise oriented arrays of nanostructures wherein two or more different materials are regularly arrayed and wherein the presence of two different materials alternates. The two or more materials have different electron affinities. The two materials may be in the form of matrixed arrays of nanostructures. The presence of the two different materials may alternate within distances of between about 1 nm and about 100 nm. An orientation can be imposed on the array, e.g. through solution deposition surfactant temptation or other methods.
    Type: Application
    Filed: December 11, 2002
    Publication date: December 16, 2004
    Applicant: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen
  • Publication number: 20040084080
    Abstract: Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling, material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Applicant: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen, Klaus Petritsch, Greg Smestad, Jacqueline Fidanza, Gregory A. Miller, Dong Yu