Patents by Inventor Brian Roberson

Brian Roberson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970089
    Abstract: A system and method are provided for controlling an interior configuration of a vehicle following a collision. Sensor data that includes, or is derived from data that includes, data collected by one or more sensors is received, and a vehicle accident condition indicative of an accident having occurred is detected by processing the sensor data. After detecting the vehicle accident condition, an actuator component is caused to prevent a passenger from adjusting an interior vehicle component outside a predetermined range of physical configurations, while allowing the passenger to adjust the interior vehicle component within the predetermined range of physical configurations.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: April 30, 2024
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Scott T. Christensen, Brian M. Fields, Stephen R. Prevatt, Steve Roberson
  • Patent number: 11934189
    Abstract: In a network of autonomous or semi-autonomous vehicles, an alert may be triggered when one of the vehicles switches from autonomous to manual mode. The alert may be communicated to nearby autonomous vehicles so that drivers of those vehicles may become aware of a potentially unpredictable manual driver nearby. Drivers of autonomous vehicles who may have become disengaged (e.g., sleeping, reading, talking, etc.) during autonomous driving may become re-engaged upon noticing the alert. A re-engaged driver may choose to switch his/her own vehicle from autonomous to manual mode in order to appropriately react to an unpredictable nearby manual driver. In additional or alternative embodiments, the alert may be triggered or intensified when indications of impairment of a nearby driver or malfunction of a nearby vehicle are detected.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: March 19, 2024
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Steve Roberson, Brian Mark Fields
  • Publication number: 20240075942
    Abstract: Systems and methods are provided for controlling operation of a vehicle. An example system for controlling operation of a vehicle includes one or more data collection components and one or more processors. The one or more data collection components are configured to collect data representative of a physical configuration of an interior vehicle component. The one or more processors are configured to access the collected data, determine, by processing the collected data, the physical configuration of the interior vehicle component, select a manner of operation based upon the determined physical configuration of the interior vehicle component, and cause the vehicle to operate according to the manner of operation.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Scott Thomas Christensen, Brian Mark Fields, Stephen R. Prevatt, Steve Roberson
  • Patent number: 11467316
    Abstract: Systems, methods, and computer-readable media for in-situ calibration of magnetic field measurements. In some examples, a method can involve generating a magnetic field via a magnetic field source that is coupled to a downhole tool. The magnetic field source can be located within a fixed distance from one or more sensors coupled to the downhole tool. The method can also involve obtaining respective field measurements of the known magnetic field from the one or more sensors, and comparing the respective field measurements from the one or more sensors with respective reference measurements previously obtained from the one or more sensors to yield respective comparisons. The method can then involve determining, based on the respective comparisons, a respective sensitivity drift for each of the one or more sensors.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 11, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hsu-Hsiang Wu, Wenquan Li, Faisal Farooq Shah, Brian Roberson
  • Publication number: 20210278562
    Abstract: Systems, methods, and computer-readable media for in-situ calibration of magnetic field measurements. In some examples, a method can involve generating a magnetic field via a magnetic field source that is coupled to a downhole tool. The magnetic field source can be located within a fixed distance from one or more sensors coupled to the downhole tool. The method can also involve obtaining respective field measurements of the known magnetic field from the one or more sensors, and comparing the respective field measurements from the one or more sensors with respective reference measurements previously obtained from the one or more sensors to yield respective comparisons. The method can then involve determining, based on the respective comparisons, a respective sensitivity drift for each of the one or more sensors.
    Type: Application
    Filed: December 12, 2016
    Publication date: September 9, 2021
    Applicant: HALLIBURTON ENERGY SERVICES
    Inventors: Hsu-Hsiang WU, Wenquan LI, Faisal Farooq SHAH, Brian ROBERSON
  • Patent number: 10732233
    Abstract: A reduced-cost apparatus for calibrating the sensitivity and orthogonality of a triaxial magnetometer, and a method for adjusting the distance between the two coils of a Helmholtz coil and other related parameters are described herein. A method can include positioning a calibrated magnetometer within a mounting fixture between two coils of a Helmholtz coil, the two coils arranged in mutually parallel planes and separated by the radius of the Helmholtz coil, the mounting fixture mounted such that a position of the mounting fixture is adjustable along an axis orthogonal to the mutually parallel planes; adjusting the position of the mounting fixture over at least some of the positions and measuring the magnetic field at each position to generate a set of magnetic field measurements associated with the positions; and adjusting the first distance based on the first set of magnetic field measurements. Additional apparatuses, systems, and methods are disclosed.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: August 4, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wenquan Li, Randal Thomas Beste, Jesse Kevin Hensarling, Brian Roberson, John Harrison Farrah, Tony Vu
  • Patent number: 10466309
    Abstract: A magnetic field measurement device includes an excitation circuit including an excitation coil that is coupled to a resonation control circuit. The excitation coil is wound around an amorphous soft magnetic core. The magnetic field measurement device includes a detection circuit including a detection coil that is wound around the amorphous soft magnetic core. The resonation control circuit is coupled to the excitation circuit and to the detection circuit to adjust a resonant frequency of the detection circuit responsive to temperature variations of the amorphous soft magnetic core.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 5, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wenquan Li, Randal Thomas Beste, Brian Roberson
  • Patent number: 10273799
    Abstract: Embodiments include well ranging apparatus, systems, and methods which operate to measure a total magnetic field strength at each of three sensors attached to a down hole tool housing, wherein each sensor is to provide normal, tangential, and longitudinal field strength component amplitude values, and wherein at least one of the sensors is attached to the housing spaced approximately equidistant from the other two sensors in an azimuthal plane of the housing, and wherein each of the sensors is spaced apart from the other sensors in a longitudinal direction of the housing. Further activity includes determining at least three gradient field values from the total magnetic field strength measured by the three sensors, and determining an approximate range from a first well in which the sensors are disposed, to a casing of a second well, using the at least three gradient field values. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: April 30, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Brian Roberson, Hsu-Hsiang Wu, Randal Thomas Beste
  • Publication number: 20190041469
    Abstract: A magnetic field measurement device includes an excitation circuit including an excitation coil that is coupled to a resonation control circuit. The excitation coil is wound around an amorphous soft magnetic core. The magnetic field measurement device includes a detection circuit including a detection coil that is wound around the amorphous soft magnetic core. The resonation control circuit is coupled to the excitation circuit and to the detection circuit to adjust a resonant frequency of the detection circuit responsive to temperature variations of the amorphous soft magnetic core.
    Type: Application
    Filed: September 27, 2018
    Publication date: February 7, 2019
    Inventors: Wenquan Li, Randal Thomas Beste, Brian Roberson
  • Patent number: 10114081
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may include synchronic symmetrical integrator circuitry and a magnetic field measurement device comprising an excitation circuit including an excitation coil, the excitation coil being wound around an amorphous soft magnetic core having a certain temperature coefficient such that inductance of the excitation circuit will change with temperature variations of the amorphous soft magnetic core; a detection circuit including a detection coil, the detection coil being wound around the same amorphous soft magnetic core, such that inductance variation of the detection circuit with temperature of the core can be detected from the excitation coil; and a resonation control circuit coupled to the excitation circuit and to the detection circuit to adjust a resonant frequency of the detection circuit responsive to temperature variations of the core. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: October 30, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wenquan Li, Randal Thomas Beste, Brian Roberson
  • Publication number: 20180231619
    Abstract: A reduced-cost apparatus for calibrating the sensitivity and orthogonality of a triaxial magnetometer, and a method for adjusting the distance between the two coils of a Helmholtz coil and other related parameters are described herein. A method can include positioning a calibrated magnetometer within a mounting fixture between two coils of a Helmholtz coil, the two coils arranged in mutually parallel planes and separated by the radius of the Helmholtz coil, the mounting fixture mounted such that a position of the mounting fixture is adjustable along an axis orthogonal to the mutually parallel planes; adjusting the position of the mounting fixture over at least some of the positions and measuring the magnetic field at each position to generate a set of magnetic field measurements associated with the positions; and adjusting the first distance based on the first set of magnetic field measurements. Additional apparatuses, systems, and methods are disclosed.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: Wenquan Li, Randal Thomas Beste, Jesse Kevin Hensarling, Brian Roberson, John Harrison Farrah, Tony Vu
  • Publication number: 20170315263
    Abstract: Systems for synchronizing downhole subs are disclosed. Some system embodiments may include a first downhole sub including a clock signal generator configured to generate an unmodified clock signal. The first downhole sub may also include a modification circuit configured to modify the clock signal. The system may also include a second downhole sub comprising a phase-locked loop circuit configured to receive as input the modified clock signal and output a second clock signal synchronous with the unmodified clock signal.
    Type: Application
    Filed: December 31, 2014
    Publication date: November 2, 2017
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Matthew C. Griffing, Faisal F. Shah, Brian A. Roberson, Randal T. Beste
  • Publication number: 20160273340
    Abstract: Embodiments include well ranging apparatus, systems, and methods which operate to measure a total magnetic field strength at each of three sensors attached to a down hole tool housing, wherein each sensor is to provide normal, tangential, and longitudinal field strength component amplitude values, and wherein at least one of the sensors is attached to the housing spaced approximately equidistant from the other two sensors in an azimuthal plane of the housing, and wherein each of the sensors is spaced apart from the other sensors in a longitudinal direction of the housing. Further activity includes determining at least three gradient field values from the total magnetic field strength measured by the three sensors, and determining an approximate range from a first well in which the sensors are disposed, to a casing of a second well, using the at least three gradient field values. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: August 4, 2015
    Publication date: September 22, 2016
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Brian Roberson, Hsu-Hsiang Wu, Randal Thomas Beste
  • Publication number: 20160041233
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may include synchronic symmetrical integrator circuitry and a magnetic field measurement device comprising an excitation circuit including an excitation coil, the excitation coil being wound around an amorphous soft magnetic core having a certain temperature coefficient such that inductance of the excitation circuit will change with temperature variations of the amorphous soft magnetic core; a detection circuit including a detection coil, the detection coil being wound around the same amorphous soft magnetic core, such that inductance variation of the detection circuit with temperature of the core can be detected from the excitation coil; and a resonation control circuit coupled to the excitation circuit and to the detection circuit to adjust a resonant frequency of the detection circuit responsive to temperature variations of the core. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: May 26, 2015
    Publication date: February 11, 2016
    Inventors: Wenquan Li, Randal Thomas Beste, Brian Roberson
  • Publication number: 20160041234
    Abstract: A reduced-cost apparatus for calibrating the sensitivity and orthogonality of a triaxial magnetometer, and a method for adjusting the distance between the two coils of a Helmholtz coil and other related parameters are described herein. A method can include positioning a calibrated magnetometer within a mounting fixture between two coils of a Helmholtz coil, the two coils arranged in mutually parallel planes and separated by the radius of the Helmholtz coil, the mounting fixture mounted such that a position of the mounting fixture is adjustable along an axis orthogonal to the mutually parallel planes; adjusting the position of the mounting fixture over at least some of the positions and measuring the magnetic field at each position to generate a set of magnetic field measurements associated with the positions; and adjusting the first distance based on the first set of magnetic field measurements. Additional apparatuses, systems, and methods are disclosed.
    Type: Application
    Filed: May 19, 2015
    Publication date: February 11, 2016
    Inventors: Wenquan Li, Randal Thomas Beste, Jesse Kevin Hensarling, Brian Roberson, John Harrison Farrah, Tony Vu