Patents by Inventor Brian Robert Ray

Brian Robert Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11052943
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 6, 2021
    Assignee: CNH Industrial America LLC
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Publication number: 20200324985
    Abstract: A system for refilling a resource of an agricultural system includes the agricultural system including a tank that stores the resource. The system also includes a support vehicle including a container that stores the resource, a locating system that outputs a first signal indicative of a position of the support vehicle, a transfer system that includes a resource transfer device, and a controller communicatively coupled to the locating system and the transfer system including a processor and a memory. The controller determines a target location in a field to position the support vehicle, control the support vehicle such that the support vehicle is directed toward the target location, and instruct the transfer system to activate the resource transfer device to transfer the resource from the container to the tank while the position of the agricultural system is within a threshold distance of the target location.
    Type: Application
    Filed: May 19, 2017
    Publication date: October 15, 2020
    Inventors: John H. Posselius, Todd Sarkis Aznavorian, Tyson J. Dollinger, Christopher Alan Foster, Brian Robert Ray, Adam Robert Rusciolelli, Nadav Y Daniel
  • Patent number: 10398084
    Abstract: A control system for a haul vehicle, includes a first transceiver configured to receive a first signal from a second transceiver, wherein the first signal is indicative of a first determined position and a first determined velocity of the target vehicle. The control system includes a controller communicatively coupled to the first transceiver, wherein the controller automatically controls the speed of the haul vehicle by determining a desired position and a desired speed of the haul vehicle based at least in part on the first determined position and the first determined velocity of the target vehicle, instructing an automated speed control system to establish the ground speed of the haul vehicle to reach the target position, and instructing the automated speed control system to control the ground speed of the haul vehicle to maintain the target position, including during turning of the target and haul vehicles.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: September 3, 2019
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Brian Robert Ray, Peter John Dix, Daniel John Morwood, Michael G. Hornberger
  • Publication number: 20190212021
    Abstract: Ridge vents configured to cover an open ridge of a roof and allow a flow of air to exit from the open ridge through the ridge vents are provided. The ridge vents include a center portion having a length and a plurality of grooves. Left and right portions are connected to the center portion. The center portion is configured to flex along it's length, thereby forming a ridge vent angle between the left and right portions. The formed ridge vent angle is configured to correspond with a slope between roof decks defining the open ridge.
    Type: Application
    Filed: December 10, 2018
    Publication date: July 11, 2019
    Inventors: Lawrence Jerome Grubka, Brian Robert Ray, Geoffrey Howard Wilson, John Paul Devlin, David Swett, Mark Bui Breneman, James Steven Pelletier, Kurt Michael Maw
  • Publication number: 20190077456
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 14, 2019
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Patent number: 10151500
    Abstract: Ridge vents configured to cover an open ridge of a roof and allow a flow of air to exit from the open ridge through the ridge vents are provided. The ridge vents include a center portion having a length and a plurality of grooves. Left and right portions are connected to the center portion. The center portion is configured to flex along it's length, thereby forming a ridge vent angle between the left and right portions. The formed ridge vent angle is configured to correspond with a slope between roof decks defining the open ridge.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: December 11, 2018
    Assignee: OWENS CORNING INTELLECTUAL CAPITAL, LLC
    Inventors: Lawrence Jerome Grubka, Brian Robert Ray, Geoffrey Howard Wilson, John Paul Devlin, David Swett, Mark Bui Breneman, James Steven Pelletier, Kurt Michael Maw
  • Patent number: 10143126
    Abstract: The agricultural control system includes a base control system configured to communicate with a vehicle control system of an agricultural vehicle. The base control system is configured to plan an implement path through an agricultural field for an agricultural implement coupled to the agricultural vehicle based at least in part on at least one characteristic of the agricultural field. The base control system is configured to plan a vehicle path of the agricultural vehicle based at least in part on the planned implement path. The base control system is configured to send a first signal to the vehicle control system indicative of the vehicle path.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: December 4, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Christopher Alan Foster, John Henry Posselius, Brian Robert Ray, Bret Todd Turpin, Daniel John Morwood, Nathan Eric Bunderson
  • Patent number: 10144453
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 4, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Patent number: 10031525
    Abstract: A swath tracking system for an off-road vehicle includes a control system with a processor and a memory. The control system is configured to receive a plurality of vehicle location points and a current vehicle state, wherein the current vehicle state comprises a current vehicle location, generate a planned vehicle path through one or more of the plurality of vehicle location points, generate a correction path from the current vehicle location to a point along the planned vehicle path ahead of the current vehicle location along a direction of travel, generate a blended path by blending the planned vehicle path and the correction path based at least in part on an assigned weight, wherein the assigned weight is based at least in part on a heading error, a distance between the current vehicle location and the planned path, or a combination thereof, and guide the off-road vehicle along the blended path.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 24, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Peter John Dix, Brett Carson McClelland, Brendan Paul McCarthy, Brian Robert Ray, Nathan Eric Bunderson, Robert Dean Ashby, John Arthur Mitsuru Petersen, Daniel John Morwood, Bret Todd Turpin
  • Patent number: 9974225
    Abstract: A method includes generating a non-continuous curvature end-of-row turn path for an agricultural vehicle, wherein the non-continuous curvature end-of-row turn path includes a plurality of initial segments that are curved or straight, adding at least one continuity segment between each of the initial segments, wherein the at least one continuity segment is a clothoid segment, and the initial segments and the at least one continuity segment combine to form a continuous curvature end-of-row turn path, and implementing the continuous end-of-row turn path, displaying the continuous end-of-row turn path, or both.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: May 22, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Nathan Eric Bunderson, Daniel John Morwood, Brian Robert Ray, Peter John Dix, Brendan Paul McCarthy, Bret Todd Turpin, Brett McClelland
  • Patent number: 9968025
    Abstract: A method includes generating a non-continuous curvature end-of-row turn path for an agricultural vehicle, wherein the non-continuous curvature end-of-row turn path includes a plurality of initial segments that are curved or straight, adding at least one continuity segment between each of the plurality of initial segments, wherein the at least one continuity segment includes a clothoid segment, and the initial segments and the at least one continuity segment combine to form a continuous curvature end-of-row turn path, determining, via an iterative process, a maximum drivable speed based on a minimum speed and a target speed, and implementing the continuous end-of-row turn path at the maximum drivable speed.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 15, 2018
    Assignees: CNH Industrial American LLC, Autonomous Solutions, Inc.
    Inventors: Nathan Eric Bunderson, Daniel John Morwood, Brian Robert Ray, Peter John Dix, Brendan Paul McCarthy, Bret Todd Turpin, Brett McClelland
  • Publication number: 20170355398
    Abstract: A vehicle system includes a spatial location system configured to derive a geographic position of an autonomous vehicle. The vehicle system further includes a computing device communicatively coupled to the spatial location system, the computing device comprising a processor. The processor is configured select a calibration mode via a user input. The processor is also configured to execute an automatic steering calibration based on the calibration mode to update one or more steering parameters, wherein executing the automatic steering calibration comprises driving the vehicle via autoguidance to spatially follow a desired path segment.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Peter John Dix, John Arthur Mitsuru Petersen, Brenden Paul McCarthy, Nathan Eric Bunderson, Brian Robert Ray
  • Publication number: 20170357262
    Abstract: A swath tracking system for an off-road vehicle includes a control system with a processor and a memory. The control system is configured to receive a plurality of vehicle location points and a current vehicle state, wherein the current vehicle state comprises a current vehicle location, generate a planned vehicle path through one or more of the plurality of vehicle location points, generate a correction path from the current vehicle location to a point along the planned vehicle path ahead of the current vehicle location along a direction of travel, generate a blended path by blending the planned vehicle path and the correction path based at least in part on an assigned weight, wherein the assigned weight is based at least in part on a heading error, a distance between the current vehicle location and the planned path, or a combination thereof, and guide the off-road vehicle along the blended path.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Peter John Dix, Brett Carson McClelland, Brendan Paul McCarthy, Brian Robert Ray, Nathan Eric Bunderson, Robert Dean Ashby, John Arthur Mitsuru Petersen, Daniel John Morwood, Bret Todd Turpin
  • Publication number: 20170354079
    Abstract: The agricultural control system includes a base control system configured to communicate with a vehicle control system of an agricultural vehicle. The base control system is configured to plan an implement path through an agricultural field for an agricultural implement coupled to the agricultural vehicle based at least in part on at least one characteristic of the agricultural field. The base control system is configured to plan a vehicle path of the agricultural vehicle based at least in part on the planned implement path. The base control system is configured to send a first signal to the vehicle control system indicative of the vehicle path.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Christopher Alan Foster, John Henry Posselius, Brian Robert Ray, Bret Todd Turpin, Daniel John Morwood, Nathan Eric Bunderson
  • Publication number: 20170339821
    Abstract: A method for controlling an agricultural vehicle includes receiving, via a processor, a first signal from a user interface indicative of a value of at least one parameter. The method also includes determining, via the processor, a path of the agricultural vehicle toward a guidance swath based at least in part on the at least one parameter. In addition, the method includes outputting, via the processor, a second signal to a display of the user interface indicative of instructions to present a graphical representation of the path of the agricultural vehicle. Furthermore, the method includes controlling the agricultural vehicle, via the processor, based at least in part on the at least one parameter upon receiving at least a third signal from the user interface indicative of acceptance of the value of the at least one parameter.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Brian Robert Ray, Brett Carson McClelland, Peter John Dix, Nathan Eric Bunderson
  • Patent number: 9826673
    Abstract: A method for controlling an agricultural vehicle includes receiving, via a processor, a first signal from a user interface indicative of a value of at least one parameter. The method also includes determining, via the processor, a path of the agricultural vehicle toward a guidance swath based at least in part on the at least one parameter. In addition, the method includes outputting, via the processor, a second signal to a display of the user interface indicative of instructions to present a graphical representation of the path of the agricultural vehicle. Furthermore, the method includes controlling the agricultural vehicle, via the processor, based at least in part on the at least one parameter upon receiving at least a third signal from the user interface indicative of acceptance of the value of the at least one parameter.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 28, 2017
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Brian Robert Ray, Brett Carson McClelland, Peter John Dix, Nathan Eric Bunderson
  • Publication number: 20170308091
    Abstract: A method includes generating a non-continuous curvature end-of-row turn path for an agricultural vehicle, wherein the non-continuous curvature end-of-row turn path includes a plurality of initial segments that are curved or straight, adding at least one continuity segment between each of the plurality of initial segments, wherein the at least one continuity segment includes a clothoid segment, and the initial segments and the at least one continuity segment combine to form a continuous curvature end-of-row turn path, determining, via an iterative process, a maximum drivable speed based on a minimum speed and a target speed, and implementing the continuous end-of-row turn path at the maximum drivable speed.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Nathan Eric Bunderson, Daniel John Morwood, Brian Robert Ray, Peter John Dix, Brendan Paul McCarthy, Bret Todd Turpin, Brett McClelland
  • Publication number: 20170297621
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Publication number: 20170202131
    Abstract: A method includes generating a non-continuous curvature end-of-row turn path for an agricultural vehicle, wherein the non-continuous curvature end-of-row turn path includes a plurality of initial segments that are curved or straight, adding at least one continuity segment between each of the initial segments, wherein the at least one continuity segment is a clothoid segment, and the initial segments and the at least one continuity segment combine to form a continuous curvature end-of-row turn path, and implementing the continuous end-of-row turn path, displaying the continuous end-of-row turn path, or both.
    Type: Application
    Filed: January 14, 2016
    Publication date: July 20, 2017
    Inventors: Nathan Eric Bunderson, Daniel John Morwood, Brian Robert Ray, Peter John Dix, Brendan Paul McCarthy, Bret Todd Turpin, Brett McClelland
  • Publication number: 20170192419
    Abstract: A control system for a haul vehicle, includes a first transceiver configured to receive a first signal from a second transceiver, wherein the first signal is indicative of a first determined position and a first determined velocity of the target vehicle. The control system includes a controller communicatively coupled to the first transceiver, wherein the controller automatically controls the speed of the haul vehicle by determining a desired position and a desired speed of the haul vehicle based at least in part on the first determined position and the first determined velocity of the target vehicle, instructing an automated speed control system to establish the ground speed of the haul vehicle to reach the target position, and instructing the automated speed control system to control the ground speed of the haul vehicle to maintain the target position, including during turning of the target and haul vehicles.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 6, 2017
    Inventors: Brian Robert Ray, Peter John Dix, Daniel John Morwood, Michael G. Hornberger