Patents by Inventor Brian W. Donovan

Brian W. Donovan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240046458
    Abstract: Described herein are various implementations of systems and methods for determining likelihood of a patient favorably responding to a neuromodulation procedure based on a quantitative or objective score or determination based on a plurality of indicators of pain (e.g., chronic low back pain stemming from one or more vertebral bodies or vertebral endplates of a patient). The systems and methods may involve application of artificial intelligence techniques (e.g., trained algorithms, machine learning or deep learning algorithms, and/or trained neural networks).
    Type: Application
    Filed: October 29, 2021
    Publication date: February 8, 2024
    Inventors: Brian W. Donovan, Ray M. Baker, Samit Patel
  • Publication number: 20230394668
    Abstract: Described herein are various implementations of systems and methods for determining likelihood of a patient favorably responding to a neuromodulation procedure based on a quantitative or objective score or determination based on a plurality of indicators of pain (e.g., chronic low back pain stemming from one or more vertebral bodies or vertebral endplates of a patient). The systems and methods may involve application of artificial intelligence techniques (e.g., trained algorithms, machine learning or deep learning algorithms, and/or trained neural networks).
    Type: Application
    Filed: June 21, 2023
    Publication date: December 7, 2023
    Inventors: Brian W. Donovan, Ray M. Baker, Samit Patel
  • Publication number: 20230255676
    Abstract: Described herein are various implementations of systems and methods for treating back pain (e.g., chronic low back pain) caused by different (e.g., independent) sources of pain, such as pain originating or stemming from intervertebral discs, from vertebral endplates, and/or from intraosseous locations within one or more vertebral bodies. For example, methods for treating back pain (e.g., chronic low back pain) may involve both vertebral fusion (e.g., arthrodesis or spondylodesis to fuse adjacent vertebrae) and neuromodulation (for example, ablation of nerves within or surrounding one or more of the adjacent vertebrae). The neuromodulation may facilitate treatment of pain that is generated by insertion of fusion hardware.
    Type: Application
    Filed: July 8, 2021
    Publication date: August 17, 2023
    Inventors: Brian W. Donovan, Ray M. Baker
  • Patent number: 11703428
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 18, 2023
    Assignee: Life Technologies Corporation
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20230066681
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 2, 2023
    Inventor: Brian W. Donovan
  • Patent number: 11426199
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: August 30, 2022
    Assignee: Relievant Medsystems, Inc.
    Inventors: Brian W. Donovan, Samit Patel, Ray M. Baker, Avram Allan Edidin
  • Publication number: 20220192702
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically-controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Inventor: Brian W. Donovan
  • Publication number: 20220113229
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 14, 2022
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Patent number: 11207100
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: December 28, 2021
    Assignee: Relievant Medsystems, Inc.
    Inventors: Brian W. Donovan, Samit Patel, Ray M. Baker, Avram Allan Edidin
  • Patent number: 11202655
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: December 21, 2021
    Assignee: Relievant Medsystems, Inc.
    Inventors: Brian W. Donovan, Alexander Pruitt, Michael Willink
  • Patent number: 11175203
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 16, 2021
    Assignee: Life Technologies Corporation
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20210290289
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 23, 2021
    Inventors: Brian W. Donovan, Samit Patel, Ray M. Baker, Avram Allan Edidin
  • Patent number: 11123103
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: September 21, 2021
    Assignee: Relievant Medsystems, Inc.
    Inventors: Brian W. Donovan, Alexander Pruitt, Michael Willink
  • Publication number: 20210275245
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Brian W. Donovan, Samit Patel, Ray M. Baker, Avram Allan Edidin
  • Publication number: 20210267632
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Brian W. Donovan, Alexander Pruitt, Michael Willink
  • Patent number: 11007010
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: May 18, 2021
    Assignee: Relevant Medsysterns, Inc.
    Inventors: Brian W. Donovan, Alexander Pruitt, Michael Willink
  • Publication number: 20210113239
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: December 30, 2020
    Publication date: April 22, 2021
    Inventor: Brian W. Donovan
  • Publication number: 20210113238
    Abstract: Described herein are various implementations of systems and methods for accessing and modulating tissue (for example, systems and methods for accessing and ablating nerves or other tissue within or surrounding a vertebral body to treat chronic lower back pain). Assessment of vertebral endplate degeneration or defects (e.g., pre-Modic changes) to facilitate identification of treatment sites and protocols are also provided in several embodiments. Several embodiments comprise the use of biomarkers to confirm or otherwise assess ablation, pain relief, efficacy of treatment, etc. Some embodiments include robotic elements for, as an example, facilitating robotically controlled access, navigation, imaging, and/or treatment.
    Type: Application
    Filed: December 30, 2020
    Publication date: April 22, 2021
    Inventor: Brian W. Donovan
  • Publication number: 20200284702
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: February 13, 2020
    Publication date: September 10, 2020
    Inventors: Thomas M. BAER, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Patent number: 10605706
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 31, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson