Patents by Inventor Britta Vallazza

Britta Vallazza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230272406
    Abstract: The present invention relates to stabilization of RNA, in particular mRNA, and an increase in mRNA translation. The present invention particularly relates to a modification of RNA, in particular in vitro-transcribed RNA, resulting in increased transcript stability and/or translation efficiency. According to the invention, it was demonstrated that certain sequences in the 3?-untranslated region (UTR) of an RNA molecule improve stability and translation efficiency.
    Type: Application
    Filed: September 28, 2022
    Publication date: August 31, 2023
    Inventors: Alexandra Orlandini Von Niessen, Stephanie Fesser, Britta Vallazza, Tim Beissert, Andreas Kuhn, Ugur Sahin, Marco Alexander Poleganov
  • Patent number: 11492628
    Abstract: The present invention relates to stabilization of RNA, in particular mRNA, and an increase in mRNA translation. The present invention particularly relates to a modification of RNA, in particular in vitro-transcribed RNA, resulting in increased transcript stability and/or translation efficiency. According to the invention, it was demonstrated that certain sequences in the 3?-untranslated region (UTR) of an RNA molecule improve stability and translation efficiency.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: November 8, 2022
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Alexandra Orlandini Von Niessen, Stephanie Fesser, Britta Vallazza, Tim Beissert, Andreas Kuhn, Ugur Sahin, Marco Alexander Poleganov
  • Publication number: 20200392518
    Abstract: The present invention relates to nucleic acid molecules containing poly (dA:dT) regions which are stabilized in E.-coli, methods of propagating such nucleic acid molecules in E. coli, methods of obtaining RNA, peptides or proteins using such nucleic acid molecules and to RNA which is obtained from such nucleic acid molecules and its use. In particular, the poly (dA:dT) regions contain at least one disruption by a sequence not encoding a sequence solely composed of A residues.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 17, 2020
    Inventors: Florian Eberle, Ugur Sahin, Andreas Kuhn, Britta Vallazza, Mustafa Diken
  • Patent number: 10717982
    Abstract: The present invention relates to nucleic acid molecules containing poly (dA:dT) regions which are stabilized in E. coli, methods of propagating such nucleic acid molecules in E. coli, methods of obtaining RNA, peptides or proteins using such nucleic acid molecules and to RNA which is obtained from such nucleic acid molecules and its use. In particular, the poly (dA:dT) regions contain at least one disruption by a sequence not encoding a sequence solely composed of A residues.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 21, 2020
    Assignees: BioNTech RNA Pharmaceuticals GmbH, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Florian Eberle, Ugur Sahin, Andreas Kuhn, Britta Vallazza, Mustafa Diken
  • Publication number: 20190071682
    Abstract: The present invention relates to stabilization of RNA, in particular mRNA, and an increase in mRNA translation. The present invention particularly relates to a modification of RNA, in particular in vitro-transcribed RNA, resulting in increased transcript stability and/or translation efficiency. According to the invention, it was demonstrated that certain sequences in the 3?-untranslated region (UTR) of an RNA molecule improve stability and translation efficiency.
    Type: Application
    Filed: October 5, 2016
    Publication date: March 7, 2019
    Inventors: Alexandra Orlandini Von Niessen, Stephanie Fesser, Britta Vallazza, Tim Beissert, Andreas Kuhn, Ugur Sahin, Marco Alexander Poleganov
  • Patent number: 9953131
    Abstract: The present invention relates to novel short interfering RNA (siRNA) molecules that are multi-targeted. More specifically, the present invention relates to siRNA molecules that target two or more sequences. In one embodiment, multi-targeting siRNA molecules are designed to incorporate features of siRNA molecules and features of micro-RNA (miRNA) molecules. In another embodiment, multi-targeting siRNA molecules are designed so that each strand is directed to separate targets.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 24, 2018
    Assignee: City of Hope
    Inventors: John J. Rossi, Ola Snove, Ali Ehsani, Pal Saetrom, Britta Vallazza, Jane Zhang, Lars Aagaard
  • Patent number: 9695425
    Abstract: In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNA chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic composition, the therapeutic composition comprising a B cell specific RNA aptamer that binds BAFF-R.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 4, 2017
    Assignee: CITY OF HOPE
    Inventors: John Rossi, Katrin Tiemann, Jiehua Zhou, Britta Vallazza
  • Publication number: 20170166905
    Abstract: The present invention relates to nucleic acid molecules containing poly (dA:dT) regions which are stabilized in E. coli, methods of propagating such nucleic acid molecules in E. coli, methods of obtaining RNA, peptides or proteins using such nucleic acid molecules and to RNA which is obtained from such nucleic acid molecules and its use. In particular, the poly (dA:dT) regions contain at least one disruption by a sequence not encoding a sequence solely composed of A residues.
    Type: Application
    Filed: July 6, 2015
    Publication date: June 15, 2017
    Applicants: BioNTech RNA Pharmaceuticals GmbH, TRON - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Unive
    Inventors: Florian EBERLE, Ugur SAHIN, Andreas KUHN, Britta VALLAZZA, Mustafa DIKEN
  • Publication number: 20170004254
    Abstract: The present invention relates to novel short interfering RNA (siRNA) molecules that are multi-targeted. More specifically, the present invention relates to siRNA molecules that target two or more sequences. In one embodiment, multi-targeting siRNA molecules are designed to incorporate features of siRNA molecules and features of micro-RNA (miRNA) molecules. In another embodiment, multi-targeting siRNA molecules are designed so that each strand is directed to separate targets.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 5, 2017
    Applicant: CITY OF HOPE
    Inventors: John J. ROSSI, Ola Snove, Ali Ehsani, Pal Saetrom, Britta Vallazza, Jane Zhang, Lars Aagaard
  • Publication number: 20160348113
    Abstract: In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNA chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic composition, the therapeutic composition comprising a B cell specific RNA aptamer that binds BAFF-R.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 1, 2016
    Inventors: John ROSSI, Katrin TIEMANN, Jiehua ZHOU, Britta VALLAZZA
  • Patent number: 9487785
    Abstract: The present invention relates to novel short interfering RNA (siRNA) molecules that are multi-targeted. More specifically, the present invention relates to siRNA molecules that target two or more sequences. In one embodiment, multi-targeting siRNA molecules are designed to incorporate features of siRNA molecules and features of micro-RNA (miRNA) molecules. In another embodiment, multi-targeting siRNA molecules are designed so that each strand is directed to separate targets.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 8, 2016
    Assignee: CITY OF HOPE
    Inventors: John J. Rossi, Ola Snove, Jr., Ali Ehsani, Pal Saetrom, Jr., Britta Vallazza, Jane Zhang, Lars Aagaard
  • Patent number: 9353374
    Abstract: In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNA chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic composition, the therapeutic composition comprising a B cell specific RNA aptamer that binds BAFF-R.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 31, 2016
    Assignee: CITY OF HOPE
    Inventors: John Rossi, Katrin Tiemann, Jiehua Zhou, Britta Vallazza
  • Publication number: 20160076036
    Abstract: In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNA chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic composition, the therapeutic composition comprising a B cell specific RNA aptamer that binds BAFF-R.
    Type: Application
    Filed: April 13, 2015
    Publication date: March 17, 2016
    Inventors: John ROSSI, Katrin TIEMANN, Jiehua ZHOU, Britta VALLAZZA
  • Patent number: 9006416
    Abstract: In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNa chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic composition, the therapeutic composition comprising a B cell specific RNA aptamer that binds BAFF-R.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 14, 2015
    Assignee: City of Hope
    Inventors: John Rossi, Katrin Tiemann, Jiehua Zhou, Britta Vallazza