Patents by Inventor Brooke L. Small

Brooke L. Small has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9550841
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 24, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
  • Publication number: 20160375431
    Abstract: N2-phosphinyl formamidine compounds and N2-phosphinyl formamidine metal salt complexes are described. Methods for making N2-phosphinyl formamidine compounds and N2-phosphinyl formamidine metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl formamidine metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 29, 2016
    Inventors: Michael J. CARNEY, Brooke L. SMALL, Orson L. SYDORA
  • Publication number: 20160319178
    Abstract: A composition comprising at least 75 mol % C6 to C9 monocarboxylic acid secondary C6 to C12 esters, wherein the C6 to C9 monocarboxylic acid secondary C6 to C12 esters comprise at least 20 mol % of a C6 to C9 monocarboxylic acid 2-hexyl ester, a C6 to C9 monocarboxylic acid 2-heptyl ester, a C6 to C9 monocarboxylic acid 2-octyl ester, a C6 to C9 monocarboxylic acid 2-nonyl ester, a C6 to C9 monocarboxylic acid 2-decyl ester, a C6 to C9 monocarboxylic acid 2-undecyl ester, a C6 to C9 monocarboxylic acid 2-dodecyl ester, or combinations thereof.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Inventors: Jeffery C. Gee, Brooke L. Small
  • Publication number: 20160264493
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Application
    Filed: April 7, 2016
    Publication date: September 15, 2016
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Publication number: 20160251455
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
  • Publication number: 20160168180
    Abstract: N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
    Type: Application
    Filed: February 22, 2016
    Publication date: June 16, 2016
    Inventors: Orson L. Sydora, Michael Carney, Brooke L. Small, Jeffery C. Gee, Steven Hutchison
  • Patent number: 9334203
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 10, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 9283555
    Abstract: N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: March 15, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Orson L. Sydora, Michael Carney, Brooke L. Small, Jeffery C. Gee, Steven Hutchison
  • Patent number: 9120826
    Abstract: A process comprising contacting an alkene, a hydrogen-boron bond containing compound, and a metal complex selected from the group consisting of an N2-phosphinyl amidine metal complex, an N2-phosphinyl formamidine complex, and an N2-phosphinyl guanidine metal complex under conditions suitable to form an alkylboron compound. A process comprising contacting a linear internal alkene, a metal complex selected from the group consisting of an N2-phosphinyl amidine metal complex, an N2-phosphinyl formamidine complex, and an N2-phosphinyl guanidine metal complex to form a terminal alkylboron compound under conditions suitable to form a terminal alkylboron compound.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: September 1, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Orson L. Sydora, Mark Stradiotto, Laura Turculet, Brooke L. Small, Robert C. Coffin, Steven M. Bischof
  • Patent number: 9115225
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization or oligomerization of alpha olefins also are provided.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: August 25, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Brooke L. Small, Youlu Yu
  • Publication number: 20150166429
    Abstract: The present application relates to method for oligomerizing olefin or for producing polyalphaolefin utilizing catalyst mixtures comprising aluminum halides and an organic liquid carrier. A process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier first olefins comprise at least 60 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product. An oligomer product produced by the process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier olefins comprise at least 75 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Jeffery C. Gee, Brooke L. Small, Kenneth D. Hope, Robert C. Coffin, Steven M. Bischof
  • Patent number: 8993822
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 31, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
  • Patent number: 8865610
    Abstract: The present application relates to N2-phosphinyl guanidine metal salt complexes. The present application also relates to catalyst systems comprising N2-phosphinyl guanidine metal salt complexes and processes for making catalyst systems comprising N2-phosphinyl guanidine metal salt complexes. The present application also relates to utilizing N2-phosphinyl guanidine metal salt complexes in processes of oligomerizing or polymerizing olefins.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Orson L. Sydora, Brooke L. Small, Michael J. Carney
  • Publication number: 20140296456
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization or oligomerization of alpha olefins also are provided.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 2, 2014
    Inventors: Mark L. Hlavinka, Qing Yang, Brooke L. Small, Youlu Yu
  • Publication number: 20140221645
    Abstract: N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 7, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Orson L. Sydora, Michael Carney, Brooke L. Small, Jeffery C. Gee, Steven Hutchison
  • Patent number: 8791217
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization or oligomerization of alpha olefins also are provided.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Brooke L. Small, Youlu Yu
  • Patent number: 8680003
    Abstract: N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: March 25, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Orson L. Sydora, Michael Carney, Brooke L. Small, Jeffery C. Gee, Steven Hutchison
  • Publication number: 20130331629
    Abstract: The present application relates to N2-phosphinyl guanidine metal salt complexes. The present application also relates to catalyst systems comprising N2-phosphinyl guanidine metal salt complexes and processes for making catalyst systems comprising N2-phosphinyl guanidine metal salt complexes. The present application also relates to utilizing N2-phosphinyl guanidine metal salt complexes in processes of oligomerizing or polymerizing olefins.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Orson J. SYDORA, Brooke L. SMALL, Michael J. CARNEY
  • Publication number: 20130317265
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 8536391
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer