Patents by Inventor Bruce E. Adams

Bruce E. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945045
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Muir Hunter, Bruce E. Adams, Joseph M. Ranish
  • Publication number: 20230102821
    Abstract: A method and apparatus for determining the temperature of a substrate within a processing chamber are described herein. The methods and apparatus described herein utilize an etalon assembly and a heterodyning effect to determine a first temperature of a substrate. The first temperature of the substrate is determined without physically contacting the substrate. A separate temperature sensor also measures a second temperature of the substrate and/or the substrate support at a similar location. The first temperature and the second temperature are utilized to calibrate one of the temperature sensors disposed within the substrate support, a model of the processes performed within the processing chamber, or to adjust a process parameter of the process performed within the processing chamber.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Inventors: Bruce E. ADAMS, Samuel C. HOWELLS, Alvaro GARCIA, Barry P. CRAVER, Tony Jefferson GNANAPRAKASA, Lei LIAN
  • Publication number: 20220093428
    Abstract: Semiconductor processing systems are described to measure levels of atomic oxygen using an atomic oxygen sensor positioned within a substrate processing region of a substrate processing chamber. The processing systems may include a semiconductor chamber that has a chamber body which defines a substrate processing region. The processing chamber may also include a substrate support positioned within the substrate processing region. The atomic oxygen sensor may be positioned proximate to the substrate support in the substrate processing region of the chamber. Also described are semiconductor processing methods that include detecting a concentration of atomic oxygen in the substrate processing region with an atomic oxygen sensor positioned in the semiconductor processing chamber. The atomic oxygen sensor may include at least one electrode comprising a material selectively permeable to atomic oxygen over molecular oxygen, and may further include a solid electrolyte that selectively conducts atomic oxygen ions.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Samuel C. Howells, Martin A. Hilkene, Jose Antonio Marin
  • Patent number: 11280686
    Abstract: A method includes exposing a sample etalon-object to sample incident radiation, resulting in a sample transmitted radiation and sample reflected radiation; exposing a reference etalon-object to reference incident radiation, resulting in a reference transmitted radiation and reference reflected radiation; and analyzing resultant radiation for a heterodyned spectrum. The sample transmitted radiation may become the reference incident radiation, and the reference transmitted radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample transmitted radiation may become the resultant radiation. The sample transmitted radiation may become the reference incident radiation, and the reference reflected radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample reflected radiation may become the resultant radiation.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Samuel C. Howells, Bruce E. Adams
  • Publication number: 20210053147
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: November 5, 2020
    Publication date: February 25, 2021
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron Muir HUNTER, Bruce E. ADAMS, Joseph M. RANISH
  • Publication number: 20210002890
    Abstract: Described herein is an acoustic building panel comprising a body comprising inorganic fiber in an amount ranging from about 60.0 wt. % to about 90.0 wt. % based on the total weight of the body; and microfibrillated fiber in an amount ranging from about 0.5 wt. % to about 10 wt. % based on the total weight of the body.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Inventors: Charles G. KRICK, Bruce E. ADAMS, Kimberly S. DIFFENBAUGH
  • Patent number: 10857623
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Muir Hunter, Bruce E. Adams, Joseph M. Ranish
  • Publication number: 20200025631
    Abstract: A method includes exposing a sample etalon-object to sample incident radiation, resulting in a sample transmitted radiation and sample reflected radiation; exposing a reference etalon-object to reference incident radiation, resulting in a reference transmitted radiation and reference reflected radiation; and analyzing resultant radiation for a heterodyned spectrum. The sample transmitted radiation may become the reference incident radiation, and the reference transmitted radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample transmitted radiation may become the resultant radiation. The sample transmitted radiation may become the reference incident radiation, and the reference reflected radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample reflected radiation may become the resultant radiation.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 23, 2020
    Inventors: Samuel C. HOWELLS, Bruce E. ADAMS
  • Patent number: 10234772
    Abstract: A calibration curve for a wafer comprising a layer on a substrate is determined. The calibration curve represents a local parameter change as a function of a treatment parameter associated with a wafer exposure to a light. The local parameter of the wafer is measured. An overlay error is determined based on the local parameter of the wafer. A treatment map is computed based on the calibration curve to correct the overlay error for the wafer. The treatment map represents the treatment parameter as a function of a location on the wafer.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: March 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Mangesh Bangar, Bruce E. Adams, Kelly E. Hollar, Abhilash J. Mayur, Huixiong Dai, Jaujiun Chen
  • Patent number: 10181409
    Abstract: An optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. An energy source for the optical system is typically a plurality of lasers, which are combined to form the energy field.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 10147623
    Abstract: Embodiments of the invention generally relate to pyrometry during thermal processing of semiconductor substrates. More specifically, embodiments of the invention relate to a pyrometry filter for a thermal process chamber. In certain embodiments, the pyrometry filter selectively filters selected wavelengths of energy to improve a pyrometer measurement. The pyrometry filter may have various geometries which may affect the functionality of the pyrometry filter.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: December 4, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph M. Ranish, Bruce E. Adams
  • Patent number: 10074538
    Abstract: Apparatus and methods of treating a substrate with an amorphous semiconductor layer, or a semiconductor layer having small crystals, to form large crystals in the substrate are described. A treatment area of the substrate is identified and melted using a progressive melting process of delivering pulsed energy to the treatment area. The treatment area is then recrystallized using a progressive crystallization process of delivering pulsed energy to the area. The pulsed energy delivered during the progressive crystallization process is selected to convert the small crystals into large crystals as the melted material freezes.
    Type: Grant
    Filed: June 19, 2016
    Date of Patent: September 11, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bruce E. Adams, Aaron Muir Hunter, Stephen Moffatt
  • Patent number: 9958709
    Abstract: Embodiments of the present invention generally relate to an optical valve that modifies a laser beam to allow more energy to be irradiated onto less absorbing areas on a substrate and less energy to be irradiated onto more absorbing areas on the substrate, thus creating a more uniform heating field. The optical valve is a layered structure comprising a reflective switch layer, an absorbing layer, a thermal resistor and a thermal bath.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 1, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Bruce E. Adams
  • Patent number: 9953851
    Abstract: Embodiments described herein relate to apparatus and methods of thermal processing. More specifically, apparatus and methods described herein relate to laser thermal treatment of semiconductor substrates by increasing the uniformity of energy distribution in an image at a surface of a substrate.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jiping Li, Aaron Muir Hunter, Bruce E. Adams, Kim Vellore, Samuel C. Howells, Stephen Moffatt
  • Publication number: 20180099353
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron Muir HUNTER, Bruce E. ADAMS, Joseph M. RANISH
  • Publication number: 20180101103
    Abstract: A calibration curve for a wafer comprising a layer on a substrate is determined. The calibration curve represents a local parameter change as a function of a treatment parameter associated with a wafer exposure to a light. The local parameter of the wafer is measured. An overlay error is determined based on the local parameter of the wafer. A treatment map is computed based on the calibration curve to correct the overlay error for the wafer. The treatment map represents the treatment parameter as a function of a location on the wafer.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Inventors: Mangesh BANGAR, Bruce E. ADAMS, Kelly E. HOLLAR, Abhilash J. MAYUR, Huixiong DAI, Jaujiun CHEN
  • Patent number: 9927622
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 9908200
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: March 6, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Patent number: 9864280
    Abstract: A calibration curve for a wafer comprising a layer on a substrate is determined. The calibration curve represents a local parameter change as a function of a treatment parameter associated with a wafer exposure to a light. The local parameter of the wafer is measured. An overlay error is determined based on the local parameter of the wafer. A treatment map is computed based on the calibration curve to correct the overlay error for the wafer. The treatment map represents the treatment parameter as a function of a location on the wafer.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: January 9, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mangesh Bangar, Bruce E. Adams, Kelly E. Hollar, Abhilash J Mayur, Huixiong Dai, Jaujiun Chen
  • Patent number: 9839976
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: December 12, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Muir Hunter, Bruce E. Adams, Joseph Michael Ranish