Patents by Inventor Bruce G. Elmegreen

Bruce G. Elmegreen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10964881
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Patent number: 10935692
    Abstract: Methods and systems for locating a chemical source include cross-correlating chemical concentration data from pairs of positions using a processor to determine an average velocity vector for a group of positions that averages away turbulence contributions. A convergence region is determined based on multiple average velocity vectors to determine a chemical source location.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventor: Bruce G. Elmegreen
  • Patent number: 10693736
    Abstract: A method for monitoring at least one simulation program includes capturing, by a computer, a plurality of simulation data from the at least one simulation program, the capturing is performed in real time while the at least one simulation program is continuously streaming the plurality of simulation data, analyzing, by the computer, the captured plurality of simulation data using a streaming data software, identifying a plurality of predefined criteria within the analyzed plurality of simulation data, the plurality of predefined criteria includes at least one of an event, a result and a variable, and providing feedback to the at least one simulation program to modify a plurality of simulation parameters according to the at least one identified event, result and variable.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: June 23, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alain E. Biem, Bruce G. Elmegreen, Tayfun Gokmen
  • Patent number: 10564175
    Abstract: An accelerometer without internal mechanical attachments. Three parallel cylindrical magnets are fixed within a housing. Each cylindrical magnet has a long axis extending through the housing and a cylindrical cross-section. The cylindrical cross-sections of the cylindrical magnets are organized to form a triangular formation. The magnetization of the cylindrical magnets is tangential to the triangular formation. A diamagnetic mass object levitates within the three cylindrical magnets by the magnetization of the cylindrical magnets at an equilibrium position near the center of the triangular formation and near a central axis of the three parallel cylindrical magnets when no external force is applied. Sensors detect the location of the diamagnetic mass object when the diamagnetic mass object is displaced from the equilibrium position near the center of the triangular formation and the three parallel cylindrical magnets by an external force to the housing.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Oki Gunawan, Theodore van Kessel
  • Publication number: 20200041690
    Abstract: Methods and systems for locating a chemical source include cross-correlating chemical concentration data from pairs of positions using a processor to determine an average velocity vector for a group of positions that averages away turbulence contributions. A convergence region is determined based on multiple average velocity vectors to determine a chemical source location.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventor: Bruce G. Elmegreen
  • Patent number: 10502862
    Abstract: Methods and systems for locating a chemical source include measuring chemical concentration with sensors at a plurality of different positions. Measurements from pairs of positions are cross-correlated to determine an average velocity vector for a group of positions. A convergence region is determined based on a plurality of average velocity vectors to determine a chemical source location.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: December 10, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Bruce G. Elmegreen
  • Patent number: 10354824
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon
  • Publication number: 20190162751
    Abstract: An accelerometer without internal mechanical attachments. Three parallel cylindrical magnets are fixed within a housing. Each cylindrical magnet has a long axis extending through the housing and a cylindrical cross-section. The cylindrical cross-sections of the cylindrical magnets are organized to form a triangular formation. The magnetization of the cylindrical magnets is tangential to the triangular formation. A diamagnetic mass object levitates within the three cylindrical magnets by the magnetization of the cylindrical magnets at an equilibrium position near the center of the triangular formation and near a central axis of the three parallel cylindrical magnets when no external force is applied. Sensors detect the location of the diamagnetic mass object when the diamagnetic mass object is displaced from the equilibrium position near the center of the triangular formation and the three parallel cylindrical magnets by an external force to the housing.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 30, 2019
    Inventors: Bruce G. Elmegreen, Oki Gunawan, Theodore van Kessel
  • Publication number: 20180335544
    Abstract: Methods and systems for locating a chemical source include measuring chemical concentration with sensors at a plurality of different positions. Measurements from pairs of positions are cross-correlated to determine an average velocity vector for a group of positions. A convergence region is determined based on a plurality of average velocity vectors to determine a chemical source location.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 22, 2018
    Inventor: Bruce G. Elmegreen
  • Patent number: 10128013
    Abstract: A method, apparatus and system for decreasing random motions of a levitated diamagnetic cylinder is provided. Embodiments of the present invention utilizes a parallel dipole line (PDL) trap system to trap a diamagnetic object. The trap consists of a magnetic parallel dipole line system made of a pair of transversely magnetized (or diametric) cylindrical magnets. A diamagnetic object such as graphite rod can be trapped at the center. The system includes a differential photodetector pair, a differential amplifier, a differentiator, a proportional integral differential (PID) feedback controller and electrode voltage drive system. The feedback control system will minimize the speed of the trapped rod thus lowering its effective temperature. The system can be used to minimize intrinsic noise and enhance the precision in various sensing applications using a parallel dipole line trap.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Oki Gunawan, Bruce G. Elmegreen
  • Patent number: 9941472
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Publication number: 20180090681
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Patent number: 9881759
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon
  • Patent number: 9679645
    Abstract: A nonvolatile memory storage device includes a ferroelectric (FE) material coupled with a piezoresistive (PR) material through an inherent piezoelectric response of the FE material, wherein an electrical resistance of the PR material is dependent on a compressive stress applied thereto, the compressive stress caused by a remanent strain of the FE material resulting from a polarization of the FE material, such that a polarized state of the FE material results in a first resistance value of the PR material, and a depolarized state of the FE material results in a second resistance value of the PR material.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 13, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Alejandro G. Schrott
  • Publication number: 20170084413
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Application
    Filed: June 22, 2015
    Publication date: March 23, 2017
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon
  • Patent number: 9590167
    Abstract: A piezoelectronic transistor device includes a first piezoelectric (PE) layer, a second PE layer, and a piezoresistive (PR) layer arranged in a stacked configuration, wherein an electrical resistance of the PR layer is dependent upon an applied voltage across the first and second PE layers by an applied pressure to the PR layer by the first and second PE layers. A piezoelectronic logic device includes a first and second piezoelectric transistor (PET), wherein the first and second PE layers of the first PET have a smaller cross sectional area than those of the second PET, such that a voltage drop across the PE layers of the first PET creates a first pressure in the PR layer of the first PET that is smaller than a second pressure in the PR layer of the second PET created by the same voltage drop across the PE layers of the second PET.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns
  • Publication number: 20160359099
    Abstract: A piezoelectronic transistor device includes a first piezoelectric (PE) layer, a second PE layer, and a piezoresistive (PR) layer arranged in a stacked configuration, wherein an electrical resistance of the PR layer is dependent upon an applied voltage across the first and second PE layers by an applied pressure to the PR layer by the first and second PE layers. A piezoelectronic logic device includes a first and second piezoelectric transistor (PET), wherein the first and second PE layers of the first PET have a smaller cross sectional area than those of the second PET, such that a voltage drop across the PE layers of the first PET creates a first pressure in the PR layer of the first PET that is smaller than a second pressure in the PR layer of the second PET created by the same voltage drop across the PE layers of the second PET.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 8, 2016
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns
  • Patent number: 9472368
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon
  • Patent number: 9466781
    Abstract: A piezoelectronic transistor device includes a first piezoelectric (PE) layer, a second PE layer, and a piezoresistive (PR) layer arranged in a stacked configuration, wherein an electrical resistance of the PR layer is dependent upon an applied voltage across the first and second PE layers by an applied pressure to the PR layer by the first and second PE layers. A piezoelectronic logic device includes a first and second piezoelectric transistor (PET), wherein the first and second PE layers of the first PET have a smaller cross sectional area than those of the second PET, such that a voltage drop across the PE layers of the first PET creates a first pressure in the PR layer of the first PET that is smaller than a second pressure in the PR layer of the second PET created by the same voltage drop across the PE layers of the second PET.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: October 11, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns
  • Publication number: 20160268083
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon