Patents by Inventor Bruce K. Gale

Bruce K. Gale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230383225
    Abstract: Disclosed are microphysiological systems (MPS) that may be used to model microenvironments of the human lung. The system includes a body, having one or more vacuum channels and a circulation channel separated by one or more flexible barriers. An aperture exposes the circulation channel to the top surface of the body, over which a culturing membrane, having epithelial and endothelial cells, may be placed. The cells of the culturing membrane may be subjected to radial strain and shear forces by causing a fluid to flow through the circulation channel and applying a vacuum to the one or more vacuum channels, causing the one or more flexible barriers and the culturing membrane to deflect.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 30, 2023
    Inventors: Matt D. Nelson, Bruce K. Gale
  • Patent number: 11708556
    Abstract: A tissue sample processing system and associated methods is disclosed and described. The tissue sample processing system (100) can include a microfluidic separating system (110). The microfluidic separating system (110) can include a fluid channel to receive a carrier fluid (104) and a tissue sample (102), and a plurality of outlets. Flow of the carrier fluid (104) and the tissue sample (102) in the fluid channel can facilitate segregation of materials in the tissue sample (102) based on size into a plurality of size fractions, such that each one of the plurality of outlets receives a different size fraction of the materials in the tissue sample. In addition, the sample processing system (100) can comprise a cryopreservation system (120) associated with at least one of the plurality of outlets to freeze the material in the tissue sample (102) associated with the at least one of the plurality of outlets.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 25, 2023
    Assignee: University of Utah Research Foundation
    Inventors: Bruce K. Gale, Douglas T. Carrell, Kristin Murphy, Jim Hotaling, Jiyoung Son
  • Patent number: 11672539
    Abstract: Implementations of the present disclosure relate to apparatuses, systems, and methods for anastomosing vascular systems in medical procedures. A pair of similar or identical coupling devices may be disposed at the ends of two vessels, either natural or synthetic. The coupling devices may be capable of hermaphroditically connecting to one another to provide a simple and secure connection which promotes growth of the vessels between the bio-absorbable coupling devices.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 13, 2023
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Jayant P. Agarwal, Bruce K. Gale, Huizhong Li, Himanshu J. Sant
  • Publication number: 20230000772
    Abstract: An opioid independent surgical anesthetic composition includes an injectable dosage form of a hydrogel having a plurality of solid lipid matrix particles entrapped therein. The solid lipid matrix particles include a lipophilic local anesthetic drug and a lipid glyceride (e.g., saturated triglyceride or lipid blend of various lipid glycerides). Methods for creating a long-acting local anesthetic product can include creating a bulk solid of a lipid matrix product by heating a lipid solvent above its melting point, dissolving a lipophilic local anesthetic drug therein, reducing a temperature of the resultant drug-lipid solution to below the melting point of the lipid solvent, and heat annealing the lipid matrix to remove or reduce presence of any unstable polymorphs in the lipid matrix. The methods can further include crushing the bulk solid of the lipid matrix product to form solid lipid matrix particles and entrapping the solid lipid matrix particles within a hydrogel.
    Type: Application
    Filed: March 1, 2022
    Publication date: January 5, 2023
    Inventors: Brett Davis, Andrew M. Simpson, Jayant P. Agarwal, Jill E. Shea, Himanshu Jayant Sant, Bruce K. Gale
  • Publication number: 20220326264
    Abstract: A flow cell applicator system can include a flow cell applicator including multiple flow cells to deposit multiple substance spots on a deposition surface, and a positioning assembly to position, to dock, and to unlock the multiple flow cells relative to the deposition surface. The substance spots can be depositable when the multiple flow cells are docked on the deposition surface. The flow cell applicator system can also include a spot deposition identifier operably associated with a processor to: record data related to substance spots as applied on the deposition surface, identify data related to substance spots previously deposited on the deposition surface, or both.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 13, 2022
    Applicant: Carterra, Inc.
    Inventors: Joshua W. Eckman, Bruce K. Gale, Christopher Morrow, James Smith
  • Patent number: 11434481
    Abstract: A device for rapid non-destructive genetic material collection can include a multi-reservoir array (202) and a movement mechanism. The multi-reservoir array (202) can include multiple reservoirs (204). A plurality of the multiple reservoirs (204) can include an abrasive surface (210) capable of retaining a source of genetic material in a liquid carrier. The abrasive surface (210) has a roughness. The movement mechanism can be operable to move the multi-reservoir array (202) in an oscillating motion sufficient to create relative movement between the abrasive surface (210) and the source of the genetic material in order to remove a portion of genetic material from the source of the genetic material without destroying the source of the genetic material or the portion of the genetic material that is removed.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: September 6, 2022
    Assignee: University of Utah Research Foundation
    Inventors: Raheel Samuel, Christopher J. Lambert, Bruce K. Gale, Joshua L. Bonkowsky, Briana Freshner, Tak Chi Arlen Chung
  • Publication number: 20220054714
    Abstract: Described herein are medical film materials that incorporate one or more neuro-regenerative drugs into a polymer film. The polymer film includes a copolymer of lactide and caprolactone. The neuro-regenerative drug includes the macrolactam immunosuppressant FK506. The film is configured such that when placed under physiological conditions, the neuro-regenerative drug is released in an extended, substantially linear fashion for a period of at least 30 days.
    Type: Application
    Filed: January 14, 2020
    Publication date: February 24, 2022
    Inventors: Brett DAVIS, Jill SHEA, Himanshu SANT, Pratima LABROO, Bruce K GALE, Jayant P. AGARWAL
  • Publication number: 20210139885
    Abstract: A device for rapid non-destructive genetic material collection can include a multi-reservoir array (202) and a movement mechanism. The multi-reservoir array (202) can include multiple reservoirs (204). A plurality of the multiple reservoirs (204) can include an abrasive surface (210) capable of retaining a source of genetic material in a liquid carrier. The abrasive surface (210) has a roughness. The movement mechanism can be operable to move the multi-reservoir array (202) in an oscillating motion sufficient to create relative movement between the abrasive surface (210) and the source of the genetic material in order to remove a portion of genetic material from the source of the genetic material without destroying the source of the genetic material or the portion of the genetic material that is removed.
    Type: Application
    Filed: July 3, 2018
    Publication date: May 13, 2021
    Inventors: Raheel Samuel, Christopher J. Lambert, Bruce K. Gale, Johsua L. Bonkowsky, Brianna Freshner, Arlen Chung
  • Publication number: 20200253607
    Abstract: Implementations of the present disclosure relate to apparatuses, systems, and methods for anastomosing vascular systems in medical procedures. A pair of similar or identical coupling devices may be disposed at the ends of two vessels, either natural or synthetic. The coupling devices may be capable of hermaphroditically connecting to one another to provide a simple and secure connection which promotes growth of the vessels between the bio-absorbable coupling devices.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Jayant P. Agarwal, Bruce K. Gale, Huizhong Li, Himanshu J. Sant
  • Patent number: 10667816
    Abstract: Implementations of the present disclosure relate to apparatuses, systems, and methods for anastomosing vascular systems in medical procedures. A pair of similar or identical coupling devices may be disposed at the ends of two vessels, either natural or synthetic. The coupling devices may be capable of hermaphroditically connecting to one another to provide a simple and secure connection which promotes growth of the vessels between the bio-absorbable coupling devices.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 2, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Jayant P. Agarwal, Bruce K. Gale, Huizhong Li, Himanshu J. Sant
  • Patent number: 10588855
    Abstract: Devices, systems, and methods for delivery of an active agent from the lens capsule to a posterior segment of the eye of a subject can include an intraocular active agent delivery device including an active agent dispersed within a biodegradable active agent matrix. The active agent includes dexamethasone and the delivery device is adapted to fit within a lens capsule or ciliary sulcus of an eye. The delivery device can be inserted into the lens capsule or ciliary sulcus of an eye during cataract surgery or for treatment of uveitis.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 17, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Patent number: 10300450
    Abstract: The present disclosure provides apparatuses, systems, and methods involving a spotter for depositing a substance on a submerged surface. The spotter comprises an outlet cavity defined at least in part by a spotting orifice, a first opening, and a second opening. The spotter also comprises a first conduit fluidly coupled to the first opening and a second conduit fluidly coupled to the second opening. The spotter is adapted so that fluid flowing through the first conduit and the second conduit is communicated among the first opening, the second opening, and a submerged deposition surface when the sealing orifice is sealed against the submerged deposition surface to form a deposition spot on the submerged deposition surface. The submerged deposition surface is within a liquid such that the liquid covers the deposition spot upon removal of the orifice from the deposition surface.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: May 28, 2019
    Assignee: Carterra, Inc.
    Inventors: Bruce K. Gale, Joshua W. Eckman, Adam Miles, Christopher Morrow, James Smith, Sriram Natarajan, Mark Eddings
  • Publication number: 20180250311
    Abstract: An intraocular active agent delivery device can include an active agent homogenously combined with a biodegradable active agent matrix such that the entire delivery device is homogenous. The homogenous delivery device can have a shape and size to fit within a lens capsule or ciliary sulcus of an eye and provide a therapeutically effective amount of the active agent to the eye. The biodegradable active agent matrix can be formulated to provide sustained release of the therapeutically effective amount of the active agent during a release period. In some examples, the active agent can include dexamethasone.
    Type: Application
    Filed: January 30, 2018
    Publication date: September 6, 2018
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Patent number: 10064819
    Abstract: Devices, systems, and methods for delivery of an active agent into the eye of a subject can include an intraocular active agent delivery device including an active agent dispersed within a biodegradable active agent matrix. The active agent includes dexamethasone and the delivery device is adapted to fit within a lens capsule or ciliary sulcus of an eye. The delivery device can be inserted into the lens capsule or ciliary sulcus of an eye during cataract surgery or for treatment of uveitis.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: September 4, 2018
    Assignee: University of Utah Research Foundation
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Patent number: 9877973
    Abstract: An intraocular active agent delivery device can include an active agent homogenously combined with a biodegradable active agent matrix such that the entire delivery device is homogenous. The homogenous delivery device can have a shape and size to fit within a lens capsule or ciliary sulcus of an eye and provide a therapeutically effective amount of the active agent to the eye. The biodegradable active agent matrix can be formulated to provide sustained release of the therapeutically effective amount of the active agent during a release period. In some examples, the active agent can include dexamethasone.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: January 30, 2018
    Assignee: University of Utah Research Foundation
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Publication number: 20170306288
    Abstract: A tissue sample processing system and associated methods is disclosed and described. The tissue sample processing system (100) can include a microfluidic separating system (110). The microfluidic separating system (110) can include a fluid channel to receive a carrier fluid (104) and a tissue sample (102), and a plurality of outlets. Flow of the carrier fluid (104) and the tissue sample (102) in the fluid channel can facilitate segregation of materials in the tissue sample (102) based on size into a plurality of size fractions, such that each one of the plurality of outlets receives a different size fraction of the materials in the tissue sample. In addition, the sample processing system (100) can comprise a cryopreservation system (120) associated with at least one of the plurality of outlets to freeze the material in the tissue sample (102) associated with the at least one of the plurality of outlets.
    Type: Application
    Filed: October 20, 2015
    Publication date: October 26, 2017
    Inventors: Bruce K. Gale, Douglas T. Carrell, Kristin Murphy, Jim Hotaling, Jiyoung Son
  • Publication number: 20170239272
    Abstract: An intraocular active agent delivery device can include an active agent homogenously combined with a biodegradable active agent matrix such that the entire delivery device is homogenous. The homogenous delivery device can have a shape and size to fit within a lens capsule or ciliary sulcus of an eye and provide a therapeutically effective amount of the active agent to the eye. The biodegradable active agent matrix can be formulated to provide sustained release of the therapeutically effective amount of the active agent during a release period. In some examples, the active agent can include dexamethasone.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Publication number: 20170216834
    Abstract: A system for depositing substances onto a deposition surface can comprise a first contact spotter comprising multiple spotting orifices fed by multiple fluid inlet conduits such that the first contact spotter is capable of depositing multiple spots of different substances onto the deposition surface simultaneously, and a second contact spotter comprising a second spotting orifice fed by a second fluid inlet conduit. The system can also include a positioning device adapted to alternatively position and seal the first contact spotter and second contact spotter on the deposition surface at an overlapping location.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Joshua W. Eckman, Adam Miles, James Smith, Christopher Morrow, Bruce K. Gale
  • Patent number: 9682396
    Abstract: A system for depositing substances onto a deposition surface can comprise a first contact spotter comprising multiple spotting orifices fed by multiple fluid inlet conduits such that the first contact spotter is capable of depositing multiple spots of different substances onto the deposition surface simultaneously, and a second contact spotter comprising a second spotting orifice fed by a second fluid inlet conduit. The system can also include a positioning device adapted to alternatively position and seal the first contact spotter and second contact spotter on the deposition surface at an overlapping location.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: June 20, 2017
    Assignee: CARTERRA, INC.
    Inventors: Joshua W. Eckman, Adam Miles, James Smith, Christopher Morrow, Bruce K. Gale
  • Patent number: 9682372
    Abstract: The present disclosure provides apparatuses, systems, and methods involving a spotter apparatus for depositing a substance from a carrier fluid onto a deposition surface in an ordered array, the spotter apparatus comprising a loading surface including a first well and a second well; and a different outlet surface, including a first opening and a second opening, where a first microconduit fluidly couples the first well with the first opening and a second microconduit fluidly couples the second well with the second opening. An overlay is sealed to the outlet surface and penetrated by a deposition channel that is situated to communicate carrier fluid among the first opening, the second opening, and the deposition surface when the overlay is pressed against the deposition surface.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 20, 2017
    Assignee: CARTERRA, INC.
    Inventors: Bruce K. Gale, Adam Miles, Joshua Wayne Eckman, Sriram Natarajan, Jim Smith, Mark Eddings