Patents by Inventor Bruce Lanning

Bruce Lanning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11511997
    Abstract: This disclosure provides an electrophoretic display system including a first electrode disposed on a substrate and a three-dimensional (3D) carbon-based structure configured to guide a migration of electrically charged electrophoretic ink particles dispersed therein that are configured to be responsive to application of a voltage to the first electrode. The 3D carbon-based structure includes a plurality of 3D aggregates defined by a morphology of graphene nanoplatelets orthogonally fused together and cross-linked by a polymer; and, a plurality of channels interspersed throughout the 3D carbon-based structure defined by the morphology. The plurality of channels includes a plurality of inter-particle pathways and a plurality of intra-particle pathways. Each inter-particle pathway can include a smaller dimension than each inter-particle pathway. A second electrode is disposed on the 3D carbon-based structure.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 29, 2022
    Assignee: Lyten, Inc.
    Inventors: Sung H. Lim, Michael W. Stowell, Bruce Lanning
  • Patent number: 11508966
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 22, 2022
    Assignee: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11479062
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. The plies and/or the treads and/or other surfaces of the tire include one or more resonators that respond to being interrogated by an externally generated excitation signal. Multiple resonators formed of electrically-conducting materials are disposed (e.g., printed) on the plies and/or tread and/or other surfaces of the tire. Each of a group of multiple resonators can be individually configured to respond to different frequencies of the excitation signal such that the presence of a response (e.g., a measured attenuation of the excitation signal return) or lack of response (e.g., based on comparison of the excitation signal return to calibration curves) from individual ones of the multiple resonators can be combined to form a serial number that is unique to the tire or other elastomer-containing component (e.g., belts, hoses, etc.) being interrogated.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 25, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Patent number: 11472233
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. In some implementations, the plies and/or the tread include a resonator that generates a resonant signal in response to being activated by locally generated power or by an externally generated excitation signal. Multiple resonators formed of carbon-containing materials are distributed in the plies and/or tread to respond to changes to the tire by altering a characteristic of the resonant signal. Such alterations include frequency shifting of the resonant signal and/or attenuation of the resonant signal. The resonator can be configured to resonate at a first frequency when a structural characteristic of a respective ply or tread is greater than a level, and to resonate at a second frequency different than the first frequency when the structural characteristic of the respective ply or tread is not greater than the level.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 18, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Patent number: 11462728
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 4, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Patent number: 11446966
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. In some implementations, the plies and/or the tread include a resonator that generates a resonant signal in response to being activated by locally generated power or by an externally generated excitation signal. Multiple resonators formed of carbon-containing materials are distributed in the plies and/or tread to respond to changes to the tire by altering a characteristic of the resonant signal. Such alterations include frequency shifting of the resonant signal and/or attenuation of the resonant signal. The resonator can be configured to resonate at a first frequency when a structural characteristic of a respective ply or tread is greater than a level, and to resonate at a second frequency different than the first frequency when the structural characteristic of the respective ply or tread is not greater than the level.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 20, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Publication number: 20220275174
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. KC
  • Patent number: 11404692
    Abstract: A cathode may be formed form a first porous carbonaceous region and a second porous carbonaceous region positioned adjacent to the first porous carbonaceous region. Each region may have a corresponding concentration level of porous carbonaceous materials. Specifically, each region may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by several tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: August 2, 2022
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell, Anurag Kumar
  • Publication number: 20220209221
    Abstract: A composition of matter suitable for usage as a formative material for a lithium-sulfur battery cathode is provided. The composition of matter may include a carbon structure formed by multiple carbon particles interconnected to one another. Each carbon particle may include pores and exposed surfaces. In this way, an electrically conductive material (ECM) (e.g., silver and/or antimony) may be deposited in the pores and coated (e.g., conformally coated) on the exposed surfaces of respective carbon particles. In addition, at least some carbon particles may disintegrate and provide exposed surfaces prior to deposition of the ECM. For example, disintegrated carbon particles may have a greater surface-area-to-volume ratio than whole carbon particles, thereby providing an increased amount of surface area available for subsequent ECM deposition. In addition, in some aspects, an active material may be infiltrated in one or more carbon particles and pores.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20220207252
    Abstract: A container includes a surface and a first resonance portion. The surface defines a volume of the container, and the first resonance portion includes an assembly of three-dimensional (3D) carbon-containing structures printed on the surface of the container using one or more first carbon-based inks. The first resonance portion is configured to indicate a presence of an item within the container by resonating at one or more predetermined frequencies in response to an electromagnetic radiation ping associated with a user device located a distance from the container. In some implementations, the container may include a second resonance portion including an assembly of 3D carbon-containing structures printed on the surface of the container using one or more second carbon-based inks, the one or more second carbon-based inks being different than the one or more first carbon-based inks.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 30, 2022
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 11352481
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: June 7, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. KC
  • Patent number: 11335911
    Abstract: This disclosure provides an electrode having a carbon-based structure with a plurality of localized reaction sites. An open porous scaffold is defined by the carbon-based structure and can confine an active material in the localized reaction sites. A plurality of engineered failure points is formed throughout the carbon-based structure and can expand in a presence of volumetric expansion associated with polysulfide shuttle. The open porous scaffold can inhibit a formation of interconnecting solid networks of the active material between the localized reaction sites. The plurality of engineered failure points can relax or collapse during an initial activation of the electrode. The open porous scaffold can define a hierarchical porous compliant cellular architecture formed of a plurality of interconnected graphene platelets fused together at substantially orthogonal angles.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: May 17, 2022
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Bryce H. Anzelmo, George Clayton Gibbs, Shreeyukta Singh, Hossein-Ali Ghezelbash, Prashanth Jampani Hanumantha, Daniel Cook, David Tanner
  • Patent number: 11299397
    Abstract: Presently disclosed is a multi-layered carbon-based scaffolded structure having a conductive substrate. A first film is deposited on the conductive substrate and includes: a first concentration of three-dimensional (3D) carbon-based particles comprising: a plurality of conductive 3D aggregates formed of graphene sheets that are sintered together to define a 3D hierarchical open porous structure with mesoscale structuring in combination with micron-scale fractal structuring that is also configured to provide conduction between contact points of the graphene sheets. A porous arrangement is formed in the 3D hierarchical open porous structure and contains a liquid electrolyte configured to provide ion transport through a plurality of interconnected porous channels. The first film is configured to provide a first conductivity. A second film is deposited on the first film and comprising a second concentration of 3D carbon-based particles.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: April 12, 2022
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell
  • Patent number: 11288466
    Abstract: Methods include receiving a request from a user device to download an application and providing access to the application in response to the request. The application is configured to transmit a first electromagnetic radiation and receive, from an electromagnetic state sensing device (EMSSD) that is affixed to product packaging, a first electromagnetic radiation return signal. The first electromagnetic radiation return signal is transduced by the EMSSD to produce an electromagnetic radiation signal that encodes first information comprising a product identification code.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: March 29, 2022
    Assignee: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Publication number: 20220041498
    Abstract: Methods for manufacturing and/or reinforcing a carbon-containing glass material are disclosed. The method includes supplying a non-thermal equilibrium plasma including a plurality of positive charged gas particles and a plurality of ionized inert gas particles into a reaction chamber, and accelerating at least the plurality of positive charged gas particles through the reaction chamber based on application of an external electric potential to the non-thermal equilibrium plasma. The method includes bombarding a surface-to-air interface of the glass material with the accelerated positive charged gas particles and the ionized inert gas particles, and forming an interphase region in the glass material in response to the bombardment. The method includes forming a compressive stress layer in the glass material in response to the bombardment by at least the ionized inert gas particles.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 10, 2022
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Publication number: 20220041499
    Abstract: Methods for manufacturing a carbon-containing glass material are disclosed. The method includes flowing a hydrocarbon gas and silane into a reactor, and providing an additive to the reactor. The method includes generating a non-thermal equilibrium plasma based on excitement of the hydrocarbon gas and the silane by a microwave energy, where the non-thermal equilibrium plasma includes a plurality of methyl radicals. The method includes ion-bombarding the glass material with at least the methyl radicals to create an interphase region. The method includes forming a plurality of FLG nanoplatelets within the interphase region based on recombination or self-nucleation of the methyl radicals. The FLG nanoplatelets may be dispersed throughout the interphase region in a non-periodic orientation that at least partially inhibits formation of cracks in the glass material.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 10, 2022
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Publication number: 20220041491
    Abstract: In some implementations, a carbon-containing glass material includes a surface-to-air interface and an interphase region extending from the surface-to-air interface along a direction to a depth within the carbon-containing glass material. The surface-to-air interface may be exposed to ambient air, and the interphase region may include a plurality of few layer graphene (FLG) nanoplatelets formed in response to recombination and/or self-nucleation of a plurality of carbon-containing radicals implanted within the interphase region. The FLG nanoplatelets have a non-periodic orientation configured to at least partially inhibit formation or propagation of microcracks and/or micro-voids in the carbon-containing glass material.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 10, 2022
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 11210478
    Abstract: A container includes a surface and an electromagnetic state sensing device including one or more resonance portions printed on the surface of the container. Each resonance portion may include an assembly of 3D carbon-containing structures that convey information of a stored item by resonating at a predetermined frequency in response to an electromagnetic radiation ping received from a user device. The resonance portions may include at least a first resonance portion configured to convey product identification information of the stored item and a second resonance portion configured to convey product state information of the stored item. The first resonance portion conveys product identification information of the stored item in response to a first electromagnetic radiation ping having a first frequency, and the second resonance portion conveys product state information of the stored item in response to a second electromagnetic radiation ping having a second frequency different than the first frequency.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: December 28, 2021
    Assignee: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 11198611
    Abstract: This disclosure provides a composition of matter nucleated from a homogenous nucleation to form a self-assembled binder-less mesoporous carbon-based particle. In some implementations, the composition includes: a plurality of electrically conductive 3D aggregates formed of graphene sheets and sintered together to define a 3D hierarchical open porous structure comprising mesoscale structuring with micron-scale fractal structuring and configured to provide an electrical conduction between contact points of the graphene sheets. A porous arrangement is formed in the 3D hierarchical open porous structure and is arranged to contain a liquid electrolyte configured to provide ion transport through a plurality of interconnected porous channels in the 3D hierarchical open porous structure.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: December 14, 2021
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell
  • Publication number: 20210310110
    Abstract: This disclosure provides a graded composition including at least a first, second, and third material property zone each having a crystallographic configuration distinct from other zones. In some implementations, the graded composition has a first material in the first material property zone including a metal, the first material composed of metallic bonds between metal atoms present in the first material property zone; a second material that at least partially overlaps the first material in the first material property zone including carbon, the second material composed of covalent bonds between the carbon in the second material and the metal in the first material; and, a third material that at least partially overlaps the second material property zone including carbon, the third material composed of covalent bonds between the carbon of the third material. Each crystallographic configuration may include a cubic crystallographic lattice, a hexagonal lattice, a face or body-centered cubic lattice.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 7, 2021
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Peter Todd Williams, Daniel Cook