Patents by Inventor Bruce M. Wilding

Bruce M. Wilding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7153489
    Abstract: A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: December 26, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, Bruce M. Wilding, William T. Zollinger
  • Patent number: 7044113
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: May 16, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Patent number: 6997012
    Abstract: A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: February 14, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: William T. Zollinger, Dennis N. Bingham, Michael G. McKellar, Bruce M. Wilding, Kerry M. Klingler
  • Patent number: 6962061
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: November 8, 2005
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Rateman, Gary L. Palmer, Kerry M. Klinger, John J. Vranicar
  • Patent number: 6953028
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: October 11, 2005
    Assignee: Battele Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Patent number: 6899146
    Abstract: A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: May 31, 2005
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis A. Bingham, Michael L. Clark, Bruce M. Wilding, Gary L. Palmer
  • Patent number: 6886362
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: May 3, 2005
    Assignee: Bechtel BWXT Idaho LLC
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Publication number: 20040250871
    Abstract: A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
    Type: Application
    Filed: May 9, 2003
    Publication date: December 16, 2004
    Inventors: Dennis A. Bingham, Michael L. Clark, Bruce M. Wilding, Gary L. Palmer
  • Publication number: 20040055584
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Application
    Filed: July 16, 2003
    Publication date: March 25, 2004
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Publication number: 20030196452
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 23, 2003
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Publication number: 20030192343
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 16, 2003
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Patent number: 6619273
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: September 16, 2003
    Assignee: Bechtel BWXT Idaho LLC
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Patent number: 6581409
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: June 24, 2003
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Patent number: 6551385
    Abstract: A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: April 22, 2003
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Terry D. Turner, Bruce M. Wilding, Michael G. McKellar, Kevin T. Raterman
  • Publication number: 20020189597
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Application
    Filed: July 5, 2002
    Publication date: December 19, 2002
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Patent number: 6494191
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: December 17, 2002
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Publication number: 20020174678
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 28, 2002
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Publication number: 20020170544
    Abstract: A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.
    Type: Application
    Filed: April 4, 2002
    Publication date: November 21, 2002
    Inventors: Dennis N. Bingham, Bruce M. Wilding, James E. O'Brien, Ali S. Siahpush, Kevin B. Brown
  • Patent number: 6425263
    Abstract: A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: July 30, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Dennis N. Bingham, Bruce M. Wilding, Michael G. McKellar
  • Publication number: 20020095916
    Abstract: A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.
    Type: Application
    Filed: December 11, 2001
    Publication date: July 25, 2002
    Inventors: Terry D. Turner, Bruce M. Wilding, Michael G. McKellar, Kevin T. Raterman