Patents by Inventor Bryan A. Patel

Bryan A. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946644
    Abstract: No known single-stage dry low emissions fuel injectors are capable of effectively operating over all ranges of hydrogen concentrations in hydrogen/natural gas fuel mixtures. Accordingly, a fuel injector is disclosed that is capable of operating in both a premix mode for fuel mixtures with lower hydrogen concentrations and a micromix mode for fuel mixtures with higher hydrogen concentrations. The fuel injector may comprise premix jets near an inlet of the fuel injector, optionally within one or more swirlers, and micromix jets near the outlet of the fuel injector. In the premix mode, fuel with lower hydrogen concentrations is provided to the premix jets, whereas in the micromix mode, fuel with higher hydrogen concentrations is provided to the micromix jets.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: April 2, 2024
    Assignee: Solar Turbines Incorporated
    Inventors: Bryan D. Quay, Hanjie Lee, Rajeshriben Patel, Robert Fanella
  • Publication number: 20240093102
    Abstract: Systems and methods are provided for integration of polymeric waste co-processing in cokers to produce circular chemical products from coker gas oil, including a method of producing circular chemical products comprising: providing a coker gas oil that is at least partially derived from polymeric waste, wherein the coker gas oil has a paraffin content of about 5 wt % to about 50 wt %, a sulfur content of about 0.1 wt % to about 7 wt %, and a halide content of about 0.1 wppm to about 5 wppm; and converting the coker gas oil into at least a polymer.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 21, 2024
    Inventors: Bryan A. Patel, Brenda A. Raich, Steven M. Slack, Derrick B. Callander, Eric M. Yucha, Fritz A. Bernatz, Rainer Kolb, Alex S. Kolb
  • Publication number: 20240084095
    Abstract: Systems and methods are provided for integration of polymeric waste co-processing in cokers to produce circular chemical products from coker naphtha, including a method of producing circular chemical products comprising: providing a coker naphtha that is at least partially derived from polymeric waste, wherein the coker naphtha has a total halide content of about 1 wppm to about 0.5 wt %, a 2-3 ring aromatic content of about 0 wt % to about 5 wt %, and a sulfur content of about 750 ppm to about 2 wt %; and converting the coker naphtha into at least a polymer.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 14, 2024
    Inventors: Bryan A. Patel, Brenda A. Raich, Steven M. Slack, Derrick B. Callander, Eric M. Yucha, Fritz A. Bernatz, Rainer Kolb, Alex S. Kolb
  • Publication number: 20240084199
    Abstract: Systems and methods are provided for integration of polymeric waste co-processing in cokers to produce circular chemical products from coker gas, including a method of producing circular chemical products comprising: providing a coker gas that is at least partially derived from polymeric waste, wherein the coker gas has an olefin content of about 10 wt % to about 30 wt %, a sulfur content of about 0.5 wt % to about 5 wt %, and a total halide content of about 1 wppm to about 150 wppm; and oxygen-containing compounds in an amount of about 0.5 wt % to about 15 wt %; and converting the coker gas into at least a polymer.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 14, 2024
    Inventors: Bryan A. Patel, Brenda A. Raich, Steven M. Slack, Derrick B. Callander, Eric M. Yucha, Fritz A. Bernatz, Rainer Kolb, Alex S. Kolb
  • Patent number: 11767477
    Abstract: Systems and methods are provided for partial upgrading of heavy hydrocarbon feeds to meet transport specifications, such as pipeline transport specifications. The systems and methods can allow for one or more types of improvement in heavy hydrocarbon processing prior to transport. In some aspects, the systems and methods can produce a partially upgraded heavy hydrocarbon product that satisfies one or more transport specifications while incorporating an increased amount of vacuum gas oil and a reduced amount of pitch into the partially upgraded heavy hydrocarbon product. In other aspects, the systems and methods can allow for increased incorporation of hydrocarbons into the fraction upgraded for transport, thereby reducing or minimizing the amount of hydrocarbons requiring an alternative method of disposal or transport.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: September 26, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Eric B. Shen, Anjaneya S Kovvali, Aruna Ramkrishnan, Arun K. Sharma, Samuel J. Cady, Stephen H. Brown, Rustom M. Billimoria, Brenda A. Raich, Bryan A. Patel, Phillip K. Schoch, John Della Mora
  • Publication number: 20230287276
    Abstract: Systems and methods are provided for conversion of polymers (such as plastic waste) to olefins. The systems and methods can include a recycle loop so that a portion of the pyrolysis effluent can be combined with solid plastic feedstock. The input flow to the pyrolysis reactor can correspond to a slurry of plastic particles in recycled effluent or a solution of plastic in recycled effluent.
    Type: Application
    Filed: July 14, 2021
    Publication date: September 14, 2023
    Inventors: Bryan A. Patel, Randolph J Smiley, Saurabh S. Maduskar, Sundararajan Uppili, Michael W. Weber
  • Publication number: 20230131108
    Abstract: Systems and methods are provided for separation of particles and/or asphaltenes from heavy hydrocarbon fractions. The heavy hydrocarbon fraction can correspond to a feed including particles or a processing effluent that includes particles. If the heavy hydrocarbon fraction is mixed with lower boiling fractions, a separation can be performed to reduce or minimize the amount of hydrocarbons that are present in the heavy hydrocarbon fraction. The heavy hydrocarbon fraction can then be mixed with a sufficient amount of a separation solvent to cause a phase separation. One phase can correspond to the separation solvent plus a portion of the hydrocarbons. The other phase can correspond to hydrocarbons rejected by the separation solvent plus the particles from the heavy hydrocarbon fraction. The phases can then be separated from each other using a solids-liquid centrifugal separator.
    Type: Application
    Filed: March 31, 2020
    Publication date: April 27, 2023
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Bryan A. PATEL, Brenda A. RAICH, Keith K. ALDOUS
  • Publication number: 20220372375
    Abstract: Systems and methods are provided for co-processing of plastic waste in a coking environment or other thermal conversion environment. The co-processing of plastic waste in a coking environment can be performed by performing four types of processes on the plastic waste. The plastic waste can be conditioned by classifying and sizing of the plastic waste to improve the suitability of the plastic waste for co-processing. The conditioned plastic waste particles can be entrained and/or dissolved into a solvent and/or the base feed. The solution and/or slurry of plastic waste can be passed into a coking environment, such as a fluidized coking environment or a delayed coking environment. The plastic waste can then be co-processed in the coking environment to generate liquid product.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Inventors: Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Mohsen N. Harandi
  • Publication number: 20220333024
    Abstract: Systems and methods are provided for partial upgrading of heavy hydrocarbon feeds to meet transport specifications, such as pipeline transport specifications. The systems and methods can allow for one or more types of improvement in heavy hydrocarbon processing prior to transport. In some aspects, the systems and methods can produce a partially upgraded heavy hydrocarbon product that satisfies one or more transport specifications while incorporating an increased amount of vacuum gas oil and a reduced amount of pitch into the partially upgraded heavy hydrocarbon product. In other aspects, the systems and methods can allow for increased incorporation of hydrocarbons into the fraction upgraded for transport, thereby reducing or minimizing the amount of hydrocarbons requiring an alternative method of disposal or transport.
    Type: Application
    Filed: August 14, 2020
    Publication date: October 20, 2022
    Inventors: Eric B. SHEN, Anjaneya S. KOVVALI, Aruna RAMKRISHNAN, Arun K. SHARMA, Samuel J. CADY, Stephen H. BROWN, Rustom M. BILLIMORIA, Brenda A. RAICH, Bryan A. PATEL, Phillip K. SCHOCH, John DELLA MORA
  • Publication number: 20220325189
    Abstract: Systems and methods are provided for partial upgrading of heavy hydrocarbon feeds to meet transport specifications, such as pipeline transport specifications. The systems and methods can allow for one or more types of improvement in heavy hydrocarbon processing prior to transport. In some aspects, the systems and methods can produce a partially upgraded heavy hydrocarbon product that satisfies one or more transport specifications while incorporating an increased amount of vacuum gas oil and a reduced amount of pitch into the partially upgraded heavy hydrocarbon product. In other aspects, the systems and methods can allow for increased incorporation of hydrocarbons into the fraction upgraded for transport, thereby reducing or minimizing the amount of hydrocarbons requiring an alternative method of disposal or transport.
    Type: Application
    Filed: August 14, 2020
    Publication date: October 13, 2022
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Eric B. SHEN, Anjaneya S. KOVVALI, Aruna RAMKRISHNAN, Arun K. SHARMA, Samuel J. CADY, Stephen H. BROWN, Rustom M. BILLIMORIA, Brenda A. RAICH, Bryan A. PATEL, Phillip K. SCHOCH, John DELLA MORA
  • Publication number: 20220275293
    Abstract: Systems and methods are provided for partial upgrading of heavy hydrocarbon feeds to meet transport specifications, such as pipeline transport specifications. The systems and methods can allow for one or more types of improvement in heavy hydrocarbon processing prior to transport. In some aspects, the systems and methods can produce a partially upgraded heavy hydrocarbon product that satisfies one or more transport specifications while incorporating an increased amount of vacuum gas oil and a reduced amount of pitch into the partially upgraded heavy hydrocarbon product. In other aspects, the systems and methods can allow for increased incorporation of hydrocarbons into the fraction upgraded for transport, thereby reducing or minimizing the amount of hydrocarbons requiring an alternative method of disposal or transport.
    Type: Application
    Filed: August 14, 2020
    Publication date: September 1, 2022
    Inventors: Eric B. SHEN, Anjaneya S. KOVVALI, Aruna RAMKRISHNAN, Samuel J. CADY, Stephen H. BROWN, Rustom M. BILLIMORIA, Brenda A. RAICH, Bryan A. PATEL, Phillip K. SCHOCH, John DELLA MORA, Arun K. SHARMA
  • Publication number: 20220195309
    Abstract: Systems and methods are provided for integration of a reactor for polyolefin pyrolysis with the effluent processing train for a steam cracker. The polyolefins can correspond to, for example, polyolefins in plastic waste. Integrating a process for polyolefin pyrolysis with a steam cracker processing train can allow a mixture of polymers to be converted to monomer units while reducing or minimizing costs and/or equipment footprint. This can allow for direct conversion of polyolefins to the light olefin monomers in high yield while significantly lowering capital and energy usage due to integration with a steam cracking process train. The integration can be enabled in part by selecting feeds with appropriate mixtures of various polymer types and/or by limiting the volume of the plastic waste pyrolysis product relative to the volume from the steam cracker(s) in the steam cracking process train.
    Type: Application
    Filed: June 12, 2020
    Publication date: June 23, 2022
    Inventors: Sundararajan Uppili, Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Anthony Go, Saurabh S. Maduskar, Melissa D. Foster, Philippe Laurent
  • Publication number: 20210198173
    Abstract: A process for oxidizing methyl-substituted biphenyl compounds comprises contacting a mixture comprising isomers of at least one methyl-substituted biphenyl compound with a source of oxygen, wherein the mixture comprises at least 20 wt % of isomer(s) having a methyl group at a 2-position or a 3-position on at least one benzene ring and at least 50 wt % of isomer(s) having a methyl group at a 4-position on at least one benzene ring, wherein said percentages are based on the total weight of the at least one methylbiphenyl compound in the mixture.
    Type: Application
    Filed: February 19, 2021
    Publication date: July 1, 2021
    Inventors: Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Stephen Zushma
  • Patent number: 10894925
    Abstract: A multi-stage process for upgrading tars is provided. A predominantly hydrotreating stage can be applied before a cracking stage, which can be a hydrocracking or a thermal cracking stage. Alternatively, a predominantly cracking stage, which can be a hydrocracking or a thermal cracking stage, can be applied before a hydrotreating stage. Apparatus suitable for performing the method is also provided.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: January 19, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Bryan A. Patel, Sumathy Raman, John S. Coleman, Reyyan Koc-Karabocek, Teng Xu, Cyrus J. Rachal, Subramanya V. Nayak
  • Publication number: 20200325096
    Abstract: A process for oxidizing methyl-substituted biphenyl compounds comprises contacting a mixture comprising isomers of at least one methyl-substituted biphenyl compound with a source of oxygen, wherein the mixture comprises at least 20 wt % of isomer(s) having a methyl group at a 2-position or a 3-position on at least one benzene ring and at least 50 wt % of isomer(s) having a methyl group at a 4-position on at least one benzene ring, wherein said percentages are based on the total weight of the at least one methylbiphenyl compound in the mixture.
    Type: Application
    Filed: March 1, 2017
    Publication date: October 15, 2020
    Inventors: Jihad M. Dakka, Bryan A Patel, Michael Salciccioli, Stephen Zushma
  • Patent number: 10584096
    Abstract: Provided herein is a cyclic imide slurry composition and processes for forming and/or using such a composition. The slurry composition comprises solid cyclic imide and organic liquid, such as liquid alkylbenzene, liquid cyclohexane, and/or liquid organic alcohol (such as cyclohexanol). The slurry composition may find particular use in processes in which the cyclic imide serves as an oxidation catalyst (e.g., as a radical initiator). For instance, the slurry composition may be useful in the oxidation of a liquid alkylbenzene such as cyclohexylbenzene to corresponding 1-cyclohexyl-1-phenyl hydroperoxide. Such an oxidation reaction may further be part of an integrated process for the production of phenol and/or cyclohexanone from benzene via hydroalkylation to form cyclohexylbenzene.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 10, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andrew R. Witt, Christopher L. Becker, Bryan A. Patel
  • Publication number: 20190233373
    Abstract: Provided herein is a cyclic imide slurry composition and processes for forming and/or using such a composition. The slurry composition comprises solid cyclic imide and organic liquid, such as liquid alkylbenzene, liquid cyclohexane, and/or liquid organic alcohol (such as cyclohexanol). The slurry composition may find particular use in processes in which the cyclic imide serves as an oxidation catalyst (e.g., as a radical initiator). For instance, the slurry composition may be useful in the oxidation of a liquid alkylbenzene such as cyclohexylbenzene to corresponding 1-cyclohexyl-1-phenyl hydroperoxide. Such an oxidation reaction may further be part of an integrated process for the production of phenol and/or cyclohexanone from benzene via hydroalkylation to form cyclohexylbenzene.
    Type: Application
    Filed: September 18, 2017
    Publication date: August 1, 2019
    Inventors: Andrew R. Witt, Christopher L. Becker, Bryan A. Patel
  • Patent number: 10322991
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 18, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10287230
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 14, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10214486
    Abstract: Disclosed are processes and systems for oxidizing cycloalkylbenzene such as cyclohexylbenzene to make an oxygenate such as a hydroperoxide thereof. A liquid distributor having multiple liquid ingress ports is used for supplying a cycloalkylbenzene-containing liquid into an oxidation reactor in the form of liquid streams forming part of the reaction medium. A gas distributor distributing an O2-containing gas into the reaction medium in the form of gas streams is preferably located below the liquid distributor. Preferably the gas bubbles upwards in the reaction medium. The agitation and mixing provided by the liquid streams, gas streams/bubbles result in sufficient homogeneity of cycloalkylbenzene concentration, cycloalkylbenzene hydroperoxide concentration, dissolved oxygen concentration, and temperature in the liquid phase.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yesim Igci, Bryan A. Patel, Min Chang