Patents by Inventor Bryan Barnard

Bryan Barnard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220381713
    Abstract: A method and apparatus for detection of charged particles in spectroscopy. Charged particles, received from an energy dispersive spectroscopic analyser as a charged particle beam, are accelerated towards a detector. The accelerated charged particles are received at an array of detecting pixels, the array of detecting pixels forming the detector. The charged particles arriving at the detector have a spread in the energy dispersive direction.
    Type: Application
    Filed: November 9, 2020
    Publication date: December 1, 2022
    Inventors: Bryan Barnard, Pavel Stejskal
  • Patent number: 10692689
    Abstract: The invention relates to an image capture assembly and method for use in an electron backscatter diffraction (EBSD) system. An image capture assembly comprises a scintillation screen (10) including a predefined screen region (11), an image sensor (20) comprising an array of photo sensors and a lens assembly (30). The image capture assembly is configured to operate in at least a first configuration or a second configuration. In the first configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto the array and in the second configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto a sub-region (21) of the array. In each of the first and second configurations the field of view of the lens assembly (30) is the same.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: June 23, 2020
    Assignee: VG Systems Limited
    Inventors: Zoran Pesic, Chris Stephens, Austin Day, Bryan Barnard
  • Publication number: 20180166253
    Abstract: The invention relates to an image capture assembly and method for use in an electron backscatter diffraction (EBSD) system. An image capture assembly comprises a scintillation screen (10) including a predefined screen region (11), an image sensor (20) comprising an array of photo sensors and a lens assembly (30). The image capture assembly is configured to operate in at least a first configuration or a second configuration. In the first configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto the array and in the second configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto a sub-region (21) of the array. In each of the first and second configurations the field of view of the lens assembly (30) is the same.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Inventors: Zoran PESIC, Chris STEPHENS, Austin DAY, Bryan BARNARD
  • Patent number: 9478388
    Abstract: A method of processing one or more surfaces is provided, comprising: providing a switchable ion gun which is switchable between a cluster mode setting for producing an ion beam substantially comprising ionized gas clusters for irradiating a surface and an atomic mode setting for producing an ion beam substantially comprising ionized gas atoms for irradiating a surface; and selectively operating the ion gun in the cluster mode by mass selecting ionized gas clusters using a variable mass selector thereby irradiating a surface substantially with ionized gas clusters or the atomic mode by mass selecting ionized gas atoms using a variable mass selector thereby irradiating a surface substantially with ionized gas atoms.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 25, 2016
    Assignee: VG SYSTEMS LIMITED
    Inventor: Bryan Barnard
  • Patent number: 8993982
    Abstract: A switchable ion gun switchable between a cluster mode setting for producing an ion beam substantially comprising ionised gas clusters and an atomic mode setting for producing an ion beam substantially comprising ionised gas atoms, comprising: a source chamber having a first gas inlet; a gas expansion nozzle for producing gas clusters in the presence of gas atoms by expansion of a gas from the source chamber through the nozzle; an ionisation chamber for ionising the gas clusters and gas atoms; wherein the ionisation chamber has a second gas inlet for admitting gas directly into the ionisation chamber to form ionised gas atoms; and a variable mass selector for mass selecting the ionised gas clusters and ionised gas atoms to produce an ion beam variable between substantially comprising ionised gas clusters and substantially comprising ionised gas atoms.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 31, 2015
    Assignee: VG Systems Limited
    Inventor: Bryan Barnard
  • Publication number: 20150014275
    Abstract: A switchable ion gun switchable between a cluster mode setting for producing an ion beam substantially comprising ionised gas clusters and an atomic mode setting for producing an ion beam substantially comprising ionised gas atoms, comprising: a source chamber having a first gas inlet; a gas expansion nozzle for producing gas clusters in the presence of gas atoms by expansion of a gas from the source chamber through the nozzle; an ionisation chamber for ionising the gas clusters and gas atoms; wherein the ionisation chamber has a second gas inlet for admitting gas directly into the ionisation chamber to form ionised gas atoms; and a variable mass selector for mass selecting the ionised gas clusters and ionised gas atoms to produce an ion beam variable between substantially comprising ionised gas clusters and substantially comprising ionised gas atoms.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventor: Bryan BARNARD
  • Publication number: 20130180844
    Abstract: A method of processing one or more surfaces is provided, comprising: providing a switchable ion gun which is switchable between a cluster mode setting for producing an ion beam substantially comprising ionised gas clusters for irradiating a surface and an atomic mode setting for producing an ion beam substantially comprising ionised gas atoms for irradiating a surface; and selectively operating the ion gun in the cluster mode by mass selecting ionised gas clusters using a variable mass selector thereby irradiating a surface substantially with ionised gas clusters or the atomic mode by mass selecting ionised gas atoms using a variable mass selector thereby irradiating a surface substantially with ionised gas atoms.
    Type: Application
    Filed: October 10, 2011
    Publication date: July 18, 2013
    Inventor: Bryan Barnard
  • Patent number: 8164066
    Abstract: The invention provides a magnetic lens for generating a magnetic imaging field to focus charged particles emitted from a sample, the lens comprising a central pole piece and an outer pole piece disposed about the central pole piece, wherein the lens comprises a magnetic moveable element for movement relative to at least one of the pole pieces, whereby a focal length of the lens is variable by said movement of the magnetic moveable element, thereby enabling a zoom facility for changing the magnification of an image. The movement of the moveable element preferably changes the magnetic circuit between the pole pieces. Also provided is a method of focusing charged particles emitted from a sample and a charged particle energy analyzer, such as an imaging photoelectron spectroscopy system.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 24, 2012
    Assignee: VG Systems Limited
    Inventors: Bryan Barnard, Christopher Glenister
  • Publication number: 20110012018
    Abstract: The invention provides a magnetic lens for generating a magnetic imaging field to focus charged particles emitted from a sample, the lens comprising a central pole piece and an outer pole piece disposed about the central pole piece, wherein the lens comprises a magnetic moveable element for movement relative to at least one of the pole pieces, whereby a focal length of the lens is variable by said movement of the magnetic moveable element, thereby enabling a zoom facility for changing the magnification of an image. The movement of the moveable element preferably changes the magnetic circuit between the pole pieces. Also provided is a method of focusing charged particles emitted from a sample and a charged particle energy analyzer, such as an imaging photoelectron spectroscopy system.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 20, 2011
    Inventors: Bryan BARNARD, Christopher Glenister
  • Publication number: 20070115468
    Abstract: A spectrometer (10) for sample surface analysis by irradiation of the surface by primary particles and a corresponding method of surface analysis spectroscopy. The spectrometer (10) provides sample viewing and secondary charged particle collection substantially normal to the sample surface. A collection chamber (22) comprises a secondary charged particle lens arrangement (20) to focus the emitted particles in a downstream direction along a first normal axis (24) and thereby to define a charged particle optical crossover location (25); and a light-reflecting optical element (50) downstream of the lens arrangement and arranged to receive image light (41) and reflect it away from a second normal axis (42) for providing a viewable image of the surface.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 24, 2007
    Inventor: Bryan Barnard
  • Publication number: 20050205800
    Abstract: A flood gun 10 for charge neutralization of an analysis region Ra of a sample S downstream of the flood gun, comprising: a first source 30 of electrons; a second source 50 of positively charged particles; and an extraction and focusing assembly 60,64, arranged to: (i) extract a first, electron beam from the first source and focus the first beam to a first flood area Ae at the analysis region; and (ii) extract a second, positive particle beam from the second source and focus the second beam to a second flood area Ai at the analysis region. The electron beam and the positive particle beam may both be extracted and focused simultaneously, in a single mode of operation or, alternately, in a dual mode of operation. A corresponding method of providing charge neutralization and a spectroscopic system for secondary particle emission analysis are disclosed.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 22, 2005
    Applicant: Thermo Electron Corporation
    Inventors: Bryan Barnard, Alan Bayly, Michael Humpherson
  • Patent number: 6104029
    Abstract: A spectrometer and method of spectroscopy are provided for surface analysis. The spectrometer comprises an energy analyser for analysing the energies of charged particles liberated from a sample, a lens arranged to project a diffraction image of the analysis area at the image plane of the lens and a detector for detecting the charged particles. The analyser and lens are arranged to generate an image at the detector in which the charged particles are distributed along a first direction according to their emission angles and are distributed along another direction according to their energies. The detector is arranged to detect the distribution of charged particles in the image along the first direction to provide angle resolved energy spectra.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: August 15, 2000
    Assignee: VG Systems Ltd.
    Inventors: Peter Coxon, Bryan Barnard, H. Sebastian Von Harrach