Patents by Inventor Bryan C. Hendrix

Bryan C. Hendrix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150147824
    Abstract: A silicon precursor composition is described, including a silylene compound selected from among: silylene compounds of the formula: wherein each of R and R1 is independently selected from organo substituents; amidinate silylenes; and bis(amidinate) silylenes. The silylene compounds are usefully employed to form high purity, conformal silicon-containing films of Si02, Si3N4, SiC and doped silicates in the manufacture of microelectronic device products, by vapor deposition processes such as CVD, pulsed CVD, ALD and pulsed plasma processes. In one implementation, such silicon precursors can be utilized in the presence of oxidant, to seal porosity in a substrate comprising porous silicon oxide by depositing silicon oxide in the porosity at low temperature, e.g., temperature in a range of from 50° C. to 200° C.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 28, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas M. Cameron, Susan V. DiMeo, Bryan C. Hendrix, Weimin Li
  • Publication number: 20140329025
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Application
    Filed: July 19, 2014
    Publication date: November 6, 2014
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 8877549
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 4, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8821640
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 2, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 8802882
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 12, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Tianniu Chen, Thomas H. Baum
  • Publication number: 20140220733
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S.H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Publication number: 20140206134
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Publication number: 20140134823
    Abstract: High-k materials and devices, e.g., DRAM capacitors, and methods of making and using the same. Various methods of forming perovskite films are described, including methods in which perovskite material is deposited on the substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors. In one such method, the process is carried out with doping or alloying of the perovskite material with a higher mobility and/or higher volatility metal species than the metal species in the perovskite material-forming metal precursors. In another method, the perovskite material is exposed to elevated temperature for sufficient time to crystallize or to enhance crystallization of the perovskite material, followed by growth of the perovskite material under pulsed vapor deposition conditions. Various perovskite compositions are described, including: (Sr, Pb)TiO3; SrRuO3 or SrTiO3, doped with Zn, Cd or Hg; Sr(Sn,Ru)O3; and Sr(Sn,Ti)O3.
    Type: Application
    Filed: June 19, 2012
    Publication date: May 15, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Bryan C. Hendrix, Steven M. Bilodeau, Ing-Shin Barry Chen, Jeffrey F. Roeder, Gregory T. Stauf
  • Patent number: 8709863
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: April 29, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Patent number: 8679894
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 25, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8524931
    Abstract: Precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of strontium ruthenium oxide (SrRuO3) thin films, e.g., in the manufacture of microelectronic devices, as well as processes of making and using such precursors, and precursor supply systems containing such precursor compositions in packaged form. Cyclopentadienyl compounds of varied type are described, including cyclopentadienyl as well as non cyclopentadienyl ligands coordinated to ruthenium, strontium or barium central atoms. The precursors of the invention are useful for forming contacts for microelectronic memory device structures, and in a specific aspect for selectively coating copper metallization without deposition on associated dielectric, under deposition conditions in a forming gas ambient.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: September 3, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Bryan C. Hendrix, Thomas M. Cameron, Jeffrey F. Roeder, Matthias Stender, Tianniu Chen
  • Publication number: 20130029456
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Application
    Filed: September 18, 2012
    Publication date: January 31, 2013
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S.H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Publication number: 20130005078
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8288198
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C. with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 16, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8268665
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: June 26, 2011
    Date of Patent: September 18, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Patent number: 8241704
    Abstract: A multi-step method for depositing ruthenium thin films having high conductivity and superior adherence to the substrate is described. The method includes the deposition of a ruthenium nucleation layer followed by the deposition of a highly conductive ruthenium upper layer. Both layers are deposited using chemical vapor deposition (CVD) employing low deposition rates.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 14, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Bryan C. Hendrix, James J. Welch, Steven M. Bilodeau, Jeffrey F. Roeder, Chongying Xu, Thomas H. Baum
  • Patent number: 8236097
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 7, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder
  • Publication number: 20120135590
    Abstract: A method of fabricating a semiconductor device, comprising carrying out a gate last process including forming a dummy gate of polysilicon, and thereafter removing the dummy gate for replacement by a metal gate, wherein the dummy gate is removed by XeF2 etch removal.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 31, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Bryan C. Hendrix, Emanuel I. Cooper
  • Publication number: 20120127629
    Abstract: A composite dielectric material including an early transition metal or metal oxide base material and a dopant, co-deposited, alloying or layering secondary material, selected from among Nb, Ge, Ta, La, Y, Ce, Pr, Nd, Gd, Dy, Sr, Ba, Ca, and Mg, and oxides of such metals, and alumina as a dopant or alloying secondary material. Such composite dielectric material can be formed by vapor deposition processes, e.g., ALD, using suitable precursors, to form microelectronic devices such as ferroelectric high k capacitors, gate structures, DRAMs, and the like.
    Type: Application
    Filed: April 14, 2010
    Publication date: May 24, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey F. Roeder, Bryan C. Hendrix, Steven M. Bilodeau, Gregory T. Stauf, Tianniu Chen, Thomas M. Cameron, Chongying Xu
  • Patent number: 8153833
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as low dielectric constant (k) thin films, high k gate silicates, low temperature silicon epitaxial films, and films containing silicon nitride (Si3N4), siliconoxynitride (SiOxNy) and/or silicon dioxide (SiO2). The precursors of the invention are amenable to use in low temperature (e.g., <500° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 10, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Ravi K. Laxman, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder