Patents by Inventor Bryan Y. Pu

Bryan Y. Pu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936696
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 20, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka
  • Patent number: 8187415
    Abstract: A plasma etch reactor for plasma enhanced etching of a workpiece such as a semiconductor wafer includes a housing defining a process chamber, a workpiece support configured to support a workpiece within the chamber during processing and comprising a plasma bias power electrode. The reactor further includes a first process gas inlet coupled to receive predominantly or pure oxygen gas and a second process gas inlet coupled to receive a polymerizing etch process gas. The reactor has a ceiling plasma source power electrode including a center circular gas disperser configured to receive a process gas from the first process gas inlet and to distribute the process gas into the chamber over the workpiece, and an inner annular gas disperser centered around the center gas disperser configured to receive the process gas from the second process gas inlet and to distribute the process gas into the chamber over the workpiece through an inner plurality of injection ports.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: May 29, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jong Mun Kim, Jingbao Liu, Bryan Y. Pu
  • Publication number: 20110115589
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ROGER ALAN LINDLEY, JINGBAO LIU, BRYAN Y. PU, KEIJI HORIOKA
  • Patent number: 7879186
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: February 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka
  • Patent number: 7838430
    Abstract: A method and apparatus for controlling characteristics of a plasma in a semiconductor substrate processing chamber using a dual frequency RF source is provided. The method comprises supplying a first RF signal to a first electrode disposed in a processing chamber, and supplying a second RF signal to the first electrode, wherein an interaction between the first and second RF signals is used to control at least one characteristic of a plasma formed in the processing chamber.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: November 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Dennis S. Grimard, Theodoros Panagopoulos, Daniel J. Hoffman, Michael G. Chafin, Troy S. Detrick, Alexander Paterson, Jingbao Liu, Taeho Shin, Bryan Y. Pu
  • Patent number: 7807064
    Abstract: In one embodiment of the present invention, a halogen-free plasma etch processes is used to define a feature in a multi-layered masking stack including an amorphous carbon layer. In a particular embodiment, oxygen (O2), nitrogen (N2), and carbon monoxide (CO) are utilized to etch the amorphous carbon layer to form a mask capable of producing sub-100 nm features in a substrate film having a reduced line edge roughness value. In another embodiment, the present invention employs an O2 plasma pretreatment preceding the halogen-free amorphous carbon etch to first form an oxidized silicon region in a patterned photoresist layer to increase the selectivity of the amorphous carbon etch relative to a patterned photoresist layer containing unoxidized silicon.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jong Mun Kim, Judy Wang, Ajey M. Joshi, Jingbao Liu, Bryan Y. Pu
  • Patent number: 7736914
    Abstract: Methods for processing a substrate in a processing chamber using dual RF frequencies are provided herein. In some embodiments, a method of processing a substrate includes forming a plasma of a polymer forming chemistry to etch a feature into a substrate disposed on a substrate support in a process chamber while depositing a polymer on at least portions of the feature being etched. A low frequency and a high frequency RF signal are applied to an electrode disposed in the substrate support. The method further includes controlling the level of polymer formation on the substrate, wherein controlling the level of polymer formation comprises adjusting a power ratio of the high frequency to the low frequency RF signal.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jingbao Liu, Taeho Shin, Bryan Y. Pu
  • Publication number: 20090142859
    Abstract: Methods for processing a substrate in a processing chamber using dual RF frequencies are provided herein. In some embodiments, a method of processing a substrate includes forming a plasma of a polymer forming chemistry to etch a feature into a substrate disposed on a substrate support in a process chamber while depositing a polymer on at least portions of the feature being etched. A low frequency and a high frequency RF signal are applied to an electrode disposed in the substrate support. The method further includes controlling the level of polymer formation on the substrate, wherein controlling the level of polymer formation comprises adjusting a power ratio of the high frequency to the low frequency RF signal.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JINGBAO LIU, Taeho Shin, Bryan Y. Pu
  • Publication number: 20090008033
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Application
    Filed: September 4, 2008
    Publication date: January 8, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka
  • Publication number: 20080230511
    Abstract: In one embodiment of the present invention, a halogen-free plasma etch processes is used to define a feature in a multi-layered masking stack including an amorphous carbon layer. In a particular embodiment, oxygen (O2), nitrogen (N2), and carbon monoxide (CO) are utilized to etch the amorphous carbon layer to form a mask capable of producing sub-100 nm features in a substrate film having a reduced line edge roughness value. In another embodiment, the present invention employs an O2 plasma pretreatment preceding the halogen-free amorphous carbon etch to first form an oxidized silicon region in a patterned photoresist layer to increase the selectivity of the amorphous carbon etch relative to a patterned photoresist layer containing unoxidized silicon.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Inventors: Jong Mun Kim, Judy Wang, Ajey M. Joshi, Jingbao Liu, Bryan Y. Pu
  • Patent number: 7422654
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka
  • Publication number: 20080203056
    Abstract: Methods for forming features for high aspect ratio application in etch process are provided in the present invention. In one embodiment, the method for etching a dielectric layer disposed on a substrate includes placing a substrate having a portion of a dielectric layer exposed through a patterned photoresist layer in an etch chamber, supplying a gas mixture containing argon (Ar) gas into the etch chamber, forming a plasma from the gas mixture using dual frequency RF power and etching the exposed dielectric layer using the plasma formed from the gas mixture.
    Type: Application
    Filed: February 26, 2007
    Publication date: August 28, 2008
    Inventors: JUDY WANG, Kwang-Soo Kim, Jingbao Liu, Bryan Y. Pu
  • Patent number: 7374636
    Abstract: A method and apparatus for controlling a magnetic field gradient within a magnetically enhanced plasma reactor. The apparatus comprises a cathode pedestal supporting a wafer within an enclosure, a plurality of electromagnets positioned proximate the enclosure for producing a magnetic field in the enclosure and a magnetic field control element, positioned proximate the electromagnets, for controlling the magnetic field proximate a specific region of the wafer.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Keiji Horioka, Chun Yan, Taeho Shin, Roger Alan Lindley, Panyin Hughes, Douglas H. Burns, Evans Y. Lee, Bryan Y. Pu, Qi Li, Mahmoud Dahimene
  • Patent number: 7316199
    Abstract: A magnetic field generator for producing a magnetic field that accelerates plasma formation is placed proximate a reaction chamber of semiconductor substrate processing system. The magnetic field generator has four main magnetic coil sections for producing a magnetic field nearly parallel to the top surface of a support pedestal in the reaction chamber and four sub-magnetic coil sections placed generally coaxially with the main magnetic coil sections to produce a magnetic field of the direction opposite of that of the magnetic field produced with the main magnetic coil sections. In the magnetic field generator, magnetic fields of opposite polarities are superimposed on each other when electric currents of opposite directions are applied to the main and sub-magnetic coil sections.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: January 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Keiji Horioka, Chun Yan, Taeho Shin, Roger Alan Lindley, Qi Li, Panyin Hughes, Douglas H. Burns, Evans Y. Lee, Bryan Y. Pu
  • Publication number: 20070247075
    Abstract: A plasma etch reactor for plasma enhanced etching of a workpiece such as a semiconductor wafer includes a housing defining a process chamber, a workpiece support configured to support a workpiece within the chamber during processing and comprising a plasma bias power electrode. The reactor further includes a first process gas inlet coupled to receive predominantly or pure oxygen gas and a second process gas inlet coupled to receive a polymerizing etch process gas. The reactor has a ceiling plasma source power electrode including a center circular gas disperser configured to receive a process gas from the first process gas inlet and to distribute the process gas into the chamber over the workpiece, and an inner annular gas disperser centered around the center gas disperser configured to receive the process gas from the second process gas inlet and to distribute the process gas into the chamber over the workpiece through an inner plurality of injection ports.
    Type: Application
    Filed: July 21, 2006
    Publication date: October 25, 2007
    Inventors: Jong Mun Kim, Jingbao Liu, Bryan Y. Pu
  • Publication number: 20070249173
    Abstract: A plasma etch process etches high aspect ratio openings in a dielectric film on a workpiece in a reactor having a ceiling electrode overlying the workpiece and an electrostatic chuck supporting the workpiece. The process includes injecting a polymerizing etch process gas through an inner annular zone of gas injection orifices in the ceiling electrode, and evacuating gas from the reactor through a pumping annulus surrounding an edge of the workpiece. The high aspect ratio openings are etched in the dielectric film with etch species derived from the etch process gas while depositing a polymer derived from the etch process gas onto the workpiece, by generating a plasma in the reactor by applying VHF source power to the ceiling electrode and HF and/or LF bias power to an electrode within the electrostatic chuck.
    Type: Application
    Filed: July 21, 2006
    Publication date: October 25, 2007
    Inventors: Jong Mun Kim, Jingbao Liu, Bryan Y. Pu
  • Patent number: 6829056
    Abstract: A substrate processing apparatus has a chamber having a substrate support, gas distributor, gas energizer, and gas exhaust port. A process monitor is provided to monitor features in a first region of the substrate and generate a corresponding first signal, and to monitor features in a second region of the substrate and generate a second signal. A chamber controller receives and evaluates the first and second signals, and operates the chamber in relation to the signals. For example, the chamber controller can select a process recipe depending upon the signal values. The chamber controller can also set a process parameter at a first level in a first processing sector and at a second level in a second processing sector. The apparatus provides a closed control loop to independently monitor and control processing of features at different regions of the substrate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: December 7, 2004
    Inventors: Michael Barnes, John Holland, Hongqing Shan, Bryan Y. Pu, Mohit Jain, Zhifeng Sui, Michael D. Armacost, Neil E. Hanson, Diana Xiaobing Ma, Ashok K. Sinha, Dan Maydan
  • Patent number: 6825618
    Abstract: Apparatus and method for inductively coupling electrical power to a plasma in a semiconductor process chamber. In a first aspect, an array of wedge-shaped induction coils are distributed around a circle. The sides of adjacent coils are parallel, thereby enhancing the radial uniformity of the magnetic field produced by the array. In a second aspect, electrostatic coupling between the induction coils and the plasma is minimized by connecting each induction coil to the power supply so that the turn of wire of the coil which is nearest to the plasma is near electrical ground potential. In one embodiment, the hot end of one coil is connected to the unbalanced output of an RF power supply, and the hot end of the other coil is connected to electrical ground through a capacitor which resonates with the latter coil at the frequency of the RF power supply.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 30, 2004
    Inventors: Bryan Y. Pu, Hongching Shan, Claes Bjorkman, Kenny Doan, Mike Welch, Richard Raymond Mett
  • Patent number: 6797639
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials Inc.
    Inventors: James D Carducci, Hamid Noorbakhsh, Evans Y Lee, Bryan Y Pu, Hongching Shan, Claes Bjorkman, Siamak Salimian, Paul E Luscher, Michael D Welch
  • Publication number: 20040182516
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Application
    Filed: February 13, 2004
    Publication date: September 23, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka