Patents by Inventor Bryce H. Anzelmo

Bryce H. Anzelmo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923176
    Abstract: This disclosure provides a reactor system that includes a microwave source configured to generate a microwave energy, one or more energy sources configured to generate a thermal energy and a field-enhancing waveguide (FEWG) coupled to the microwave source. The FEWG includes a field-enhancing zone having a cross-sectional area that decreases along a length of the FEWG. The field-enhancing zone includes a supply gas inlet configured to receive a supply gas, a reaction zone configured to generate a plasma in response to excitation of the supply gas by the microwave energy, a process inlet configured to inject a raw material into the reaction zone, and an afterglow region configured to combine the plasma and the raw material in response to the thermal energy. An outlet outputs a plurality of carbon-inclusive particles resulting from the combination of the plasma and the raw material. Electrodes can be positioned proximate to the reaction zone.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 5, 2024
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Thomas Riso
  • Publication number: 20240010818
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. KC
  • Publication number: 20240002995
    Abstract: Inventive techniques for forming unique compositions of matter are disclosed, as well as various advantageous physical characteristics, and associated properties of the resultant materials. In particular, particles comprising polymer matrices are characterized by having carbon disposed within the polymer matrix structure thereof. The carbon is primarily, or entirely, present at interstitial sites of the polymer matrix, and may be present in amounts ranging from about 15 wt % to about 90 wt %. The carbon, moreover, forms covalent bonds with both atoms of the polymer matrix and other carbon atoms present in, but not part of, the matrix. This facilitates substantially homogeneous dispersal of the carbon throughout the resultant material, conveying unique and advantageous properties such as strength-to-weight ratio, density, mechanical toughness, sheer strength, flex strength, hardness, anti-corrosiveness, electrical and/or thermal conductivity, etc. as described herein.
    Type: Application
    Filed: September 13, 2023
    Publication date: January 4, 2024
    Applicant: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Michael Stowell, Daniel Jacobson, Lauren Sienko, Bruce Lanning
  • Patent number: 11813774
    Abstract: A method for continuously producing a composite material is disclosed. In some implementations, the method includes supplying a thermoplastic resin having an initial density, mixing polypropylene-graft-maleic anhydride (PPgMA) formed of a plurality of interconnected PPgMA molecules throughout the thermoplastic resin, distributing a plurality of carbon particles throughout the thermoplastic resin and the plurality of interconnected PPgMA molecules, and forming, by rotational molding, the composite material based on a combination of the thermoplastic resin, the PPgMA, and at least some of the plurality of carbon particles.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: November 14, 2023
    Assignee: Lyten, Inc.
    Inventors: John Baldwin, Salik Khan, Bryce H. Anzelmo, Minedys Macias, Chandra B. KC
  • Publication number: 20230312794
    Abstract: A composite material is provided. In some aspects, the composite material may include a combination of a thermoplastic resin mixed with a polypropylene-graft-maleic anhydride (PPgMA). Carbon particles may be mixed in the combination. In this way, the composite material may include between 80 wt. % and 90 wt. % of the thermoplastic resin, between 0.5 wt. % and 15 wt. % of PPgMA, and between 0.1 wt. % to 7 wt. % of carbon particles. Carbon particles may have exposed carbon surfaces with carbon atoms bonded to molecular sites on adjacent PPgMA molecules. At least some carbon atoms may be oxidized with one or more of oxygen-containing groups. Oxidation of carbon atoms may be associated with an increase in at least some PPgMA molecules chemically bonding with adjacent carbon atoms per unit volume. In this way, interaction between carbon atoms and PPgMA molecules may maintain composite material density within +/?3% of thermoplastic resin density.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Applicant: LytEn, Inc.
    Inventors: Bryce H. Anzelmo, Salik Khan, John Baldwin, Minedys Macias, Chandra B. KC
  • Publication number: 20230311364
    Abstract: A method for continuously producing a composite material is disclosed. In some implementations, the method includes supplying a thermoplastic resin having an initial density, mixing polypropylene-graft-maleic anhydride (PPgMA) formed of a plurality of interconnected PPgMA molecules throughout the thermoplastic resin, distributing a plurality of carbon particles throughout the thermoplastic resin and the plurality of interconnected PPgMA molecules, and forming, by rotational molding, the composite material based on a combination of the thermoplastic resin, the PPgMA, and at least some of the plurality of carbon particles.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Applicant: LytEn, Inc.
    Inventors: John Baldwin, Salik Khan, Bryce H. Anzelmo, Minedys Macias, Chandra B. KC
  • Patent number: 11767414
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: September 26, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. Kc
  • Publication number: 20230287197
    Abstract: Carbon composites, including carbon fibers, are disclosed and exhibit unique, advantageous mechanical properties, including inter laminar shear strength, compression strength, and resistance to forces applied at angles deviating from parallel to the longitudinal axis of the overall fiber. These improvements allow use of less material while conveying improved strength in myriad practical applications, reducing overall financial cost of fabrication, distribution, and practical utilization of resulting products. These advantages are optimized via utilizing inventive fabrication techniques that incorporate carbon filaments into carbon fibers, preferably incorporating carbon filaments including three-dimensional (3D) graphene platelets into said fibers. The filaments mechanically reinforce both individual fibers, as well as compositions including multiple fibers strung together in a single cord, by “crosslinking” the individual fibers with 3D graphene ligands.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 14, 2023
    Applicant: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Hossein-Ali Ghezelbash
  • Patent number: 11674031
    Abstract: A container may be formed from a composite material including a combination of thermoplastic resin and polypropylene-graft-maleic anhydride (PPgMA) mixed with one another, a plurality of carbon particles mixed in the combination, and a plurality of pores formed in at least some of the mixed carbon particles. In some instances, the carbon particles may include a first region having a relatively low concentration of carbon particles, and a second region having a relatively high concentration of carbon particles. In various implementations, the plurality of pores may be formed in at least some of the mixed carbon particles, the thermoplastic resin, and the PPgMA. In some aspects, at least some of the pores may be configured to be infiltrated by the PPgMA.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: June 13, 2023
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Salik Khan, John Baldwin, Minedys Macias, Chandra B. KC
  • Patent number: 11591457
    Abstract: A composite material includes a combination including a thermoplastic resin mixed with a polypropylene-graft-maleic anhydride (PPgMA), and a plurality of carbon particles mixed in the combination. The plurality of carbon particles may include a first region having a relatively low concentration of carbon particles, and a second region having a relatively high concentration of carbon particles, at least some of the plurality of carbon particles having exposed carbon surfaces with carbon atoms bonded to molecular sites on adjacent PPgMA molecules and oxidized with one or more oxygen-containing groups. In some aspects, composite material further includes between 80 wt. % and 90 wt. % of the thermoplastic resin, between 0.5 wt. % and 15 wt. % of the PPgMA, and between 0.1 wt. % to 7 wt. % of carbon particles. The composite material may also include a plurality of pores, formed in the combination, and configured to be infiltrated by the PPgMA.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 28, 2023
    Assignee: Lyten, Inc.
    Inventors: Salik Khan, Bryce H. Anzelmo, John Baldwin, Minedys Macias, Chandra B. KC
  • Patent number: 11560311
    Abstract: A nanoparticle or agglomerate which contains connected multi-walled spherical fullerenes coated in layers of graphite. In different embodiments, the nanoparticles and agglomerates have different combinations of: a high mass fraction compared to other carbon allotropes present, a low concentration of defects, a low concentration of elemental impurities, a high Brunauer, Emmett and Teller (BET) specific surface area, and/or a high electrical conductivity. Methods are provided to produce the nanoparticles and agglomerates at a high production rate without using catalysts.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: January 24, 2023
    Assignee: Lyten, Inc.
    Inventors: Daniel Cook, Hossein-Ali Ghezelbash, Bryce H. Anzelmo, David Tanner, Shreeyukta Singh
  • Patent number: 11479062
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. The plies and/or the treads and/or other surfaces of the tire include one or more resonators that respond to being interrogated by an externally generated excitation signal. Multiple resonators formed of electrically-conducting materials are disposed (e.g., printed) on the plies and/or tread and/or other surfaces of the tire. Each of a group of multiple resonators can be individually configured to respond to different frequencies of the excitation signal such that the presence of a response (e.g., a measured attenuation of the excitation signal return) or lack of response (e.g., based on comparison of the excitation signal return to calibration curves) from individual ones of the multiple resonators can be combined to form a serial number that is unique to the tire or other elastomer-containing component (e.g., belts, hoses, etc.) being interrogated.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 25, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Patent number: 11472233
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. In some implementations, the plies and/or the tread include a resonator that generates a resonant signal in response to being activated by locally generated power or by an externally generated excitation signal. Multiple resonators formed of carbon-containing materials are distributed in the plies and/or tread to respond to changes to the tire by altering a characteristic of the resonant signal. Such alterations include frequency shifting of the resonant signal and/or attenuation of the resonant signal. The resonator can be configured to resonate at a first frequency when a structural characteristic of a respective ply or tread is greater than a level, and to resonate at a second frequency different than the first frequency when the structural characteristic of the respective ply or tread is not greater than the level.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 18, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Patent number: 11466139
    Abstract: Compounds having an elastomer material, a filler material, at least one additive material, and at least one accelerant material are disclosed. In various embodiments, the filler material comprises a graphene-based carbon material. In various embodiments, the graphene-based carbon material comprises graphene comprising up to 15 layers, carbon aggregates having a median size from 1 to 50 microns, a surface area of the carbon aggregates at least 50 m2/g, when measured via a Brunauer-Emmett-Teller (BET) method with nitrogen as the adsorbate, and no seed particles.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: October 11, 2022
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook
  • Patent number: 11462728
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 4, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Patent number: 11446966
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. In some implementations, the plies and/or the tread include a resonator that generates a resonant signal in response to being activated by locally generated power or by an externally generated excitation signal. Multiple resonators formed of carbon-containing materials are distributed in the plies and/or tread to respond to changes to the tire by altering a characteristic of the resonant signal. Such alterations include frequency shifting of the resonant signal and/or attenuation of the resonant signal. The resonator can be configured to resonate at a first frequency when a structural characteristic of a respective ply or tread is greater than a level, and to resonate at a second frequency different than the first frequency when the structural characteristic of the respective ply or tread is not greater than the level.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 20, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Bryce H. Anzelmo, Karel Vanheusden, Sung H. Lim, Carlos Montalvo
  • Publication number: 20220275174
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. KC
  • Patent number: 11380521
    Abstract: Carbon materials having carbon aggregates, where the aggregates include carbon nanoparticles and no seed particles, are disclosed. In various embodiments, the nanoparticles include graphene, optionally with multi-walled spherical fullerenes and/or another carbon allotrope. In various embodiments, the nanoparticles and aggregates have different combinations of: a Raman spectrum with a 2D-mode peak and a G-mode peak, and a 2D/G intensity ratio greater than 0.5, a low concentration of elemental impurities, a high Brunauer-Emmett and Teller (BET) surface area, a large particle size, and/or a high electrical conductivity. Methods are provided to produce the carbon materials.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: July 5, 2022
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook, Hossein-Ali Ghezelbash, Shreeyukta Singh, Michael W. Stowell, David Tanner
  • Publication number: 20220209221
    Abstract: A composition of matter suitable for usage as a formative material for a lithium-sulfur battery cathode is provided. The composition of matter may include a carbon structure formed by multiple carbon particles interconnected to one another. Each carbon particle may include pores and exposed surfaces. In this way, an electrically conductive material (ECM) (e.g., silver and/or antimony) may be deposited in the pores and coated (e.g., conformally coated) on the exposed surfaces of respective carbon particles. In addition, at least some carbon particles may disintegrate and provide exposed surfaces prior to deposition of the ECM. For example, disintegrated carbon particles may have a greater surface-area-to-volume ratio than whole carbon particles, thereby providing an increased amount of surface area available for subsequent ECM deposition. In addition, in some aspects, an active material may be infiltrated in one or more carbon particles and pores.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Patent number: 11352481
    Abstract: Methods include producing tunable carbon structures and combining carbon structures with a polymer to form a composite material. Carbon structures include crinkled graphene. Methods also include functionalizing the carbon structures, either in-situ, within the plasma reactor, or in a liquid collection facility. The plasma reactor has a first control for tuning the specific surface area (SSA) of the resulting tuned carbon structures as well as a second, independent control for tuning the SSA of the tuned carbon structures. The composite materials that result from mixing the tuned carbon structures with a polymer results in composite materials that exhibit exceptional favorable mechanical and/or other properties. Mechanisms that operate between the carbon structures and the polymer yield composite materials that exhibit these exceptional mechanical properties are also examined.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: June 7, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Elena Rogojina, Karel Vanheusden, Margaret Hines, John Baldwin, Chandra B. KC