Patents by Inventor Bryce N Samson

Bryce N Samson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8849083
    Abstract: The present invention relates generally to optical waveguides, and more particularly to optical fibers suitable for use with high optical energies, and to devices using them. One aspect of the invention is an optical fiber having a cross-sectional profile comprising a base glass material; a first ring of first low refractive index glass features disposed in the base glass material; and a second ring of second low refractive index glass features disposed in the base glass material outside of and substantially concentric with the first ring, wherein the optical fiber has a loss of less than about 0.7 dB/m for the fundamental mode and a loss greater than about 10 dB/m for all other modes in a coiled configuration having a coil diameter in the range of about 20 cm to about 200 cm.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 30, 2014
    Assignee: Nufern
    Inventors: Bryce N. Samson, Kanxian Wei, Liang Dong
  • Patent number: 7724422
    Abstract: Optical apparatus (110, 500, 600, 800, 1000) for providing light having a selected linear polarization having a polarization ratio, the apparatus (110, 500, 600, 800, 1000) comprising a length of optical fiber (120, 504, 604, 804, 1001) comprising a rare earth for providing light having a first wavelength responsive to receiving pump light having a second wavelength that is different than said first wavelength, wherein if the length of optical fiber (120, 504, 604, 804, 1004) were placed in a first position between the length of fiber (120, 504, 604, 804, 1004) is substantially linearly oriented (20) the fiber (120, 504, 604, 804, 1004) could propagate at the first wavelength a fundamental mode and a plurality of higher order modes and the apparatus (110, 500, 600, 800, 1000) could provide light having a first polarization ratio for the selected linear polarization and an M2 parameter, and wherein the length of fiber (120, 504, 604, 804, 1004) is positioned in a second position that increases the bend loss of
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: May 25, 2010
    Assignee: Nufern
    Inventors: Jaroslaw Abramczyk, Upendra H. Manyam, Bryce N. Samson, Kanishka Tankala
  • Patent number: 6762875
    Abstract: A method for creating refractive index changes in a substrate is provided by irradiating the substrate with infrared (IR) or visible light radiation. Ultra-violet (UV) radiation is generated in the substrate responsive to the IR or visible light radiation such that the change in the refractive index of the substrate is generated responsive to the UV radiation. Preferably, the substrate comprises a glass doped with rare earth ions.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 13, 2004
    Assignee: Corning Incorporated
    Inventor: Bryce N. Samson
  • Patent number: 6694080
    Abstract: An apparatus and method for thermally tuning an optical amplifier comprises an optical waveguide doped with a fluorescent material, a thermal device for either heating or cooling the optical waveguide, and a pump light for exciting the fluorescent material. The apparatus shapes, shifts, and/or flattens the gain curves of the doped optical amplifier. Thulium doped fiber is cooled to shift the gain curve into the C-band. Erbium doped fiber is heated to flatten the gain curve in the C-band and is cooled to shift the gain curve above the L-band. The apparatus similarly shapes the gain curves of other fluorescent materials. The thermal device comprises three types of optical cooling devices. The apparatus is a component in communications systems, lasers, medical lasers and the like. The method comprises either heating or cooling optical waveguides doped with fluorescent materials to achieve the desired shaping, shifting, and flattening of the gain curves.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: February 17, 2004
    Assignee: Corning Incorporated
    Inventors: Matthew J. Dejneka, Bryce N. Samson
  • Patent number: 6632758
    Abstract: Disclosed is a substantially transparent glass-ceramic ceramic, and a method for making a glass-ceramic, exhibiting an aluminogallate spinel crystal phase and having a glass-ceramic composition that lies within the SiO2—Ga2O3—Al2O3—K2O—Na2O— system and particularly consisting essentially, in weight percent on an oxide basis, of 25-55% SiO2, 9-50% Ga2O3, 7-33% Al2O3, 0-20% K2O, 0-15% Na2O, 0-6 Li2O and 5-30% K2O+Na2O, the glass ceramic microstructure containing a crystal phase comprising at least 5%, by weight, of aluminogallate spinel crystals. Another aspect disclosed is optical element selected from the group consisting of an optical fiber, a gain or laser medium, and an amplifier component, a saturable absorber, with the element comprising a transparent glass-ceramic of the same composition and containing a crystallinity of at least about 5% by weight of aluminogallate spinel crystals.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Linda R. Pinckney, Bryce N. Samson
  • Publication number: 20030147119
    Abstract: A method for creating refractive index changes in a substrate is provided by irradiating the substrate with infrared (IR) or visible light radiation. Ultra-violet (UV) radiation is generated in the substrate responsive to the IR or visible light radiation such that the change in the refractive index of the substrate is generated responsive to the UV radiation. Preferably, the substrate comprises a glass doped with rare earth ions.
    Type: Application
    Filed: February 7, 2002
    Publication date: August 7, 2003
    Inventor: Bryce N. Samson
  • Patent number: 6589895
    Abstract: A Tm-doped germanate glass composition comprises GeO2 having a concentration of at least 20 mole percent, Tm2O3 having a concentration of about 0.001 mole percent to about 2 mole percent, and Ga2O3, having a concentration of about 2 mole percent to about 40 mole percent. The composition can further include an alkaline earth metal compound selected from the group consisting of MgO, CaO, SrO, BaO, BaF2, MgF2, CaF2, SrF2, BaCl2, MgCl2, CaCl2, SrCl2, BaBr2, MgBr2, CaBr2, SrBr2, and combinations thereof, and having a non-zero concentration of less than about 40 mole percent. The composition can further include an alkali metal compound selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, Li2F2, Na2F2, K2F2, Rb2F2, Cs2F2, Li2Cl2, Na2Cl2, K2Cl2, Rb2Cl2, Cs2Cl2, Li2Br2, Na2Br2, K2Br2, Rb2Br2, Cs2Br2 and combinations thereof, and having a non-zero concentration of less than about 20 mole percent.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: July 8, 2003
    Assignee: Corning Incorporated
    Inventors: Matthew J. Dejneka, Jean-Philippe de Sandro, Alexandre M. Mayolet, Bryce N. Samson, Ji Wang
  • Publication number: 20030087743
    Abstract: A Tm-doped germanate glass composition comprises GeO2 having a concentration of at least 20 mole percent, Tm2O3 having a concentration of about 0.001 mole percent to about 2 mole percent, and Ga2O3, having a concentration of about 2 mole percent to about 40 mole percent. The composition can further include an alkaline earth metal compound selected from the group consisting of MgO, CaO, SrO, BaO, BaF2, MgF2, CaF2, SrF2, BaCl2, MgCl2, CaCl2, SrCl2, BaBr2, MgBr2, CaBr2, SrBr2, and combinations thereof, and having a non-zero concentration of less than about 40 mole percent. The composition can further include an alkali metal compound selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, Li2F2, Na2F2, K2F2, Rb2F2, Cs2F2, Li2Cl2, Na2Cl2, K2Cl2, Rb2Cl2, Cs2Cl2, Li2Br2, Na2Br2, K2Br2, Rb2Br2, Cs2Br2 and combinations thereof, and having a non-zero concentration of less than about 20 mole percent.
    Type: Application
    Filed: June 29, 2001
    Publication date: May 8, 2003
    Inventors: Matthew J. Dejneka, Jean-Philippe de Sandro, Alexandre M. Mayolet, Bryce N. Samson, Ji Wang
  • Patent number: 6556342
    Abstract: An optical transmission system is provided comprising a thulium doped optical fiber, a light emitting pump device optically coupled to the thulium doped fiber, and a Raman amplifier fiber optically coupled to the thulium doped optical fiber. The light emitting pump device in combination with the thulium doped fiber generates a first amplification pump wavelength and the Raman amplifier receives the first amplification pump wavelength. The first pump wavelength amplifies an optical signal in the Raman amplifier, the Raman amplifier operating at a signal wavelength in the range of about 1530 nm to about 1625 nm.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: April 29, 2003
    Assignee: Corning Incorporated
    Inventors: Adam J Ellison, John D Minelly, Bryce N Samson, Nicholas J Traynor, Donnell T Walton
  • Publication number: 20030063892
    Abstract: A broadband source, including associated devices that may incorporate the broadband source, which makes use of at least one, preferably two or more broad fluorescence spectra in combination from one or more species of transition metal ions doped in one or more material bodies. The bodies are selected from crystalline, glass-ceramic, glass, or polymer-organic materials. The broadband source or devices can generate a very broad fluorescence spectrum. The combined spectrum preferably spans a wavelength range of about 500 nm to 600 nm to 700 nm, and having an intensity that does not deviate from an average intensity by more than about 10 dB, over a range or portion of the near infrared region.
    Type: Application
    Filed: May 3, 2002
    Publication date: April 3, 2003
    Inventors: George H. Beall, Nicholas F. Borrelli, Karen E. Downey, Linda R.. Pinckney, Bryce N. Samson
  • Publication number: 20030053776
    Abstract: An apparatus and method for thermally tuning an optical amplifier comprises an optical waveguide doped with a fluorescent material, a thermal device for either heating or cooling the optical waveguide, and a pump light for exciting the fluorescent material. The apparatus shapes, shifts, and/or flattens the gain curves of the doped optical amplifier. Thulium doped fiber is cooled to shift the gain curve into the C-band. Erbium doped fiber is heated to flatten the gain curve in the C-band and is cooled to shift the gain curve above the L-band. The apparatus similarly shapes the gain curves of other fluorescent materials. The thermal device comprises three types of optical cooling devices. The apparatus is a component in communications systems, lasers, medical lasers and the like. The method comprises either heating or cooling optical waveguides doped with fluorescent materials to achieve the desired shaping, shifting, and flattening of the gain curves.
    Type: Application
    Filed: September 20, 2001
    Publication date: March 20, 2003
    Inventors: Matthew J. Dejneka, Bryce N. Samson
  • Publication number: 20030013593
    Abstract: Disclosed is a substantially transparent glass-ceramic ceramic, and a method for making a glass-ceramic, exhibiting an aluminogallate spinel crystal phase and having a glass-ceramic composition that lies within the SiO2—Ga2O3—Al2O3—K2O—Na2O— system and particularly consisting essentially, in weight percent on an oxide basis, of 25-55% SiO2, 9-50% Ga2O3, 7-33% A12O3, 0-20% K20, 0-15% Na2O, 0-6 Li2O and 5-30% K2O+Na2O, the glass ceramic microstructure containing a crystal phase comprising at least 5%, by weight, of aluminogallate spinel crystals. Another aspect disclosed is optical element selected from the group consisting of an optical fiber, a gain or laser medium, and an amplifier component, a saturable absorber, with the element comprising a transparent glass-ceramic of the same composition and containing a crystallinity of at least about 5% by weight of aluminogallate spinel crystals.
    Type: Application
    Filed: May 2, 2002
    Publication date: January 16, 2003
    Inventors: George H. Beall, Linda R. Pinckney, Bryce N. Samson
  • Publication number: 20010053270
    Abstract: A glass-ceramic rare earth doped fiber comprises a plurality of crystallites, wherein at least 90% of the rare earth dopant is situated within said crystallites. The stimulated emission and absorption line shapes of the rare earth doped glass-ceramic fiber is narrower than that stimulated emission and absorption line shapes of the precursor rare earth doped glass. This is indication of the reduction in the inhomogenous broadening of glass-ceramic fibers compared to glass fibers. An embodiment of an optical amplifier includes: an input port; a length of glass-ceramic rare earth doped fiber, the glass-ceramic fiber being operatively coupled to the input port and including a plurality of crystallites; at least one optical pump coupled to this glass-ceramic fiber; an output port providing an amplified optical signal; and at least one optical component situated between the input port and the output port.
    Type: Application
    Filed: March 8, 2001
    Publication date: December 20, 2001
    Inventors: Nicholas F. Borrelli, Bryce N. Samson, Paul A. Tick