Patents by Inventor Bucknell C. Webb

Bucknell C. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564165
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 9520779
    Abstract: A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: December 13, 2016
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Leland Chang, Evan G. Colgan, John U. Knickerbocker, Bucknell C. Webb, Robert Wisnieff
  • Patent number: 9508566
    Abstract: Embodiments of the invention include a method for shaping a flexible integrated circuit to a curvature and the resulting structure. A flexible circuit is provided. An epoxy resin and amine composition is deposited on the flexible integrated circuit. The deposited epoxy resin and amine composition is B-staged. The flexible integrated circuit is placed within a mold of a curvature. The B-staged epoxy resin and amine composition is cured subsequent to placing the flexible integrated circuit within the mold of the curvature.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: November 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Paul S Andry, Bing Dang, Eric P Lewandowski, Jae-Woong Nah, Bucknell C Webb
  • Patent number: 9495989
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 9472789
    Abstract: A microsystem with an integrated energy source serves as a platform and ecosystem for a variety of microsystems for implanting into human tissue. The microsystem includes a flexible battery located in an enclosed void. The enclosed void is formed by joining a first dielectric element with a second dielectric element.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 18, 2016
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Joana Sofia Branquinho Teresa Maria, Bing Dang, Michael A. Gaynes, John U. Knickerbocker, Eric P. Lewandowski, Cornelia K. Tsang, Bucknell C. Webb
  • Publication number: 20160260451
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 8, 2016
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20160260708
    Abstract: A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20160254744
    Abstract: A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 1, 2016
    Inventors: Paul S. Andry, Leland Chang, Evan G. Colgan, John U. Knickerbocker, Bucknell C. Webb, Robert Wisnieff
  • Patent number: 9406740
    Abstract: A mechanism is provided for integrating an inductor into a semiconductor. A circular or other closed loop trench is formed in a substrate with sidewalls connected by a bottom surface in the substrate. A first insulator layer is deposited on the sidewalls of the trench so as to coat the sidewalls and the bottom surface. A conductor layer is deposited on the sidewalls and the bottom surface of the trench so as to coat the first insulator layer in the trench such that the conductor layer is on top of the first insulator layer in the trench. A first magnetic layer is deposited on the sidewalls and bottom surface of the trench so as to coat the first insulator layer in the trench without filling the trench. The first magnetic layer deposited on the sidewalls forms an inner closed magnetic loop and an outer closed magnetic loop within the trench.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 2, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Naigang Wang, Bucknell C. Webb
  • Patent number: 9384879
    Abstract: A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: July 5, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20160136401
    Abstract: A delivery device including a substrate formed in a coil comprising a plurality of loops, an active agent deposited between an inner surface and an outer surface of the substrate formed in the coil, and a pair of end caps, each end cap disposed on a corresponding end of the coil.
    Type: Application
    Filed: November 16, 2014
    Publication date: May 19, 2016
    Inventor: Bucknell C. Webb
  • Publication number: 20160133495
    Abstract: The absorption properties of both an adhesive layer and an ablation layer are employed to facilitate debonding of a device wafer and a glass handler without damaging the device wafer. The penetration depths of the adhesive and ablation layers are selected such that no more than a negligible amount of the ablation fluence reaches the surface of the device wafer.
    Type: Application
    Filed: September 3, 2015
    Publication date: May 12, 2016
    Inventors: Paul S. Andry, Jeffrey D. Gelorme, Cornelia Kang-I Tsang, Bucknell C. Webb
  • Publication number: 20160133497
    Abstract: The absorption properties of both an adhesive layer and an ablation layer are employed to facilitate debonding of a device wafer and a glass handler without damaging the device wafer. The penetration depths of the adhesive and ablation layers are selected such that no more than a negligible amount of the ablation fluence reaches the surface of the device wafer.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Paul S. Andry, Jeffrey D. Gelorme, Cornelia Kang-I Tsang, Bucknell C. Webb
  • Publication number: 20160133281
    Abstract: A magnetic device according to one embodiment includes a source of flux and a magnetic yoke coupled to the source of flux. The source of flux includes a thin film coil having multiple turns. The magnetic yoke has a pole with two or more gaps, wherein the coil turns have a non-uniform placement in the magnetic yoke for creating a higher magnetic field at one of the gaps than another of the gaps during writing. A magnetic device according to another embodiment includes a source of flux. A geometry of the magnetic pole near or at one of the gaps is different than a geometry of the magnetic pole near or at another of the gaps to help equalize fields formed at the gaps when the source of flux is generating flux.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Inventors: Robert G. Biskeborn, Philipp Herget, Bucknell C. Webb
  • Patent number: 9324495
    Abstract: A planar closed-magnetic-loop inductor and a method of fabricating the inductor are described. The inductor includes a first material comprising a cross-sectional shape including at least four segments, at least one of the at least four segments including a first edge and a second edge on opposite sides of an axial line through the at least one of the at least four segments. The first edge and the second edge are not parallel.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 9312761
    Abstract: A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Leland Chang, Evan G. Colgan, John U. Knickerbocker, Bucknell C. Webb, Robert Wisnieff
  • Publication number: 20160074323
    Abstract: Electromechanical substance delivery devices are provided which implement low-power electromechanical release mechanisms for controlled delivery of substances such as drugs and medication. For example, an electromechanical device includes a substrate having a cavity formed in a surface of the substrate, a membrane disposed on the surface of the substrate covering an opening of the cavity, and a seal disposed between the membrane and the surface of the substrate. The seal surrounds the opening of the cavity, and the seal and membrane are configured to enclose the cavity and retain a substance within the cavity. An electrode structure is configured to locally heat a portion of the membrane in response to a control voltage applied to the electrode structure, and create a stress that causes a rupture in the locally heated portion of the membrane to release the substance from within the cavity.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 17, 2016
    Inventors: S. Jay Chey, Bing Dang, John U. Knickerbocker, Kenneth F. Latzko, Joana Sofia Branquinho Teresa Maria, Lavanya Turlapati, Bucknell C. Webb, Steven L. Wright
  • Publication number: 20160049344
    Abstract: Embodiments of the invention include a method for shaping a flexible integrated circuit to a curvature and the resulting structure. A flexible circuit is provided. An epoxy resin and amine composition is deposited on the flexible integrated circuit. The deposited epoxy resin and amine composition is B-staged. The flexible integrated circuit is placed within a mold of a curvature. The B-staged epoxy resin and amine composition is cured subsequent to placing the flexible integrated circuit within the mold of the curvature.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 18, 2016
    Inventors: Paul S. Andry, Bing Dang, Eric P. Lewandowski, Jae-Woong Nah, Bucknell C Webb
  • Patent number: 9257137
    Abstract: A magnetic device according to one embodiment includes a source of flux; a magnetic pole having two or more gaps; and a low reluctance path positioned towards at least one of the gaps and riot positioned towards at least one other of the gaps for affecting a magnetic field formed at the at least one of the gaps when the source of flux is generating flux. Other disclosed embodiments include devices having coil turns with a non-uniform placement in the magnetic yoke for altering a magnetic field formed at the at least one of the gaps during writing. In further embodiments, a geometry of the magnetic pole near or at one of the gaps is different than a geometry of the magnetic pole near or at another of the gaps to help equalize fields formed at the gaps when the source of flux is generating flux.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: February 9, 2016
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Philipp Herget, Bucknell C. Webb
  • Patent number: 9245824
    Abstract: Through-via structures and methods of their formation are disclosed. In one such method, a first etch through at least a first dielectric material of a wiring layer is performed such that a first hole outlining a collar structure for the through-via is formed. In addition, a stress-abating dielectric material is deposited in the hole such that the stress-abating dielectric material is disposed at least laterally from the first dielectric material. Further, a second etching through at least a semiconductor material of a semiconductor layer that is disposed below the wiring layer is performed, where the second etching forms a via hole in the semiconductor material. Additionally, at least a portion of the via hole is filled with conductive material to form the through-via such that the stress-abating dielectric material, at least in the wiring layer, provides a buffer between the conductive material and the first dielectric material.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: January 26, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Christopher V. Jahnes, Xiao Hu Liu, Bucknell C. Webb