Patents by Inventor Byron Bemis

Byron Bemis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9656903
    Abstract: A method of forming high strength glass fibers in a glass melter substantially free of platinum or other noble metal materials, products made there from and batch compositions suited for use in the method are disclosed. One glass composition for use in the present invention includes 50-75 weight % SiO2, 13-30 weight % Al2O3, 5-20 weight % MgO, 0-10 weight % CaO, 0 to 5 weight % R2O where R2O is the sum of Li2O, Na2O and K2O, has a higher fiberizing temperature, e.g. 2400-2900° F. (1316-1593° C.) and/or a liquidus temperature that is below the fiberizing temperature by as little as 45° F. (25° C.). Another glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O, Na2O and K2O, has a fiberizing temperature less than about 2650° F. (1454° C.), and a ?T of at least 80° F. (45° C.).
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 23, 2017
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Peter Bernard McGinnis, Douglas Hofmann, David J. Baker, John W. Wingert, Byron Bemis
  • Patent number: 9206068
    Abstract: A method of forming high strength glass fibers in a continuous system is provided. The method includes supplying a glass batch to a glass melting furnace lined with a material substantially free of noble metals. The glass batch comprises about 50-about 75 weight percent SiO2, about 15-about 30 weight percent Al2O3, about 5-about 20 weight percent MgO, about 0-about 10 weight percent CaO, about 0.25-about 5 weigh percent R2O. The method further includes melting the glass batch in the furnace and forming a pool of molten glass in contact with the furnace glass contact surface, transporting the molten glass from the furnace to the bushing using a forehearth that is at least partially lined with a material substantially free of noble metal materials, discharging the molten glass from the forehearth into the bushing; and forming the molten glass into continuous fibers.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 8, 2015
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Peter B. McGinnis, Douglas Hofmann, David J. Baker, John W. Wingert, Byron Bemis
  • Publication number: 20130333422
    Abstract: A method of forming high strength glass fibers in a continuous system is provided. The method includes supplying a glass batch to a glass melting furnace lined with a material substantially free of noble metals. The glass batch comprises about 50-about 75 weight percent SiO2, about 15-about 30 weight percent Al2O3, about 5-about 20 weight percent MgO, about 0-about 10 weight percent CaO, about 0.25-about 5 weigh percent R2O. The method further includes melting the glass batch in the furnace and forming a pool of molten glass in contact with the furnace glass contact surface, transporting the molten glass from the furnace to the bushing using a forehearth that is at least partially lined with a material substantially free of noble metal materials, discharging the molten glass from the forehearth into the bushing; and forming the molten glass into continuous fibers.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 19, 2013
    Inventors: Peter B. McGinnis, Douglas Hofmann, David J. Baker, John W. Wingert, Byron Bemis
  • Publication number: 20120131964
    Abstract: Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
    Type: Application
    Filed: February 6, 2012
    Publication date: May 31, 2012
    Applicant: OCV INTELLECTUAL CAPITAL, LLC.
    Inventors: Harry Adams, Bruno A. Purnode, Byron Bemis, Patrick J. Prescott, William L. Streicher, David J. Baker
  • Patent number: 8113018
    Abstract: Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: February 14, 2012
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Harry Adams, Bruno A. Purnode, Byron Bemis, Patrick J. Prescott, William L. Streicher, David J. Baker
  • Publication number: 20100162772
    Abstract: A method of forming high strength glass fibers in a glass melter substantially free of platinum or other noble metal materials, products made there from and batch compositions suited for use in the method are disclosed. One glass composition for use in the present invention includes 50-75 weight % SiO2, 13-30 weight % Al2O3, 5-20 weight % MgO, 0-10 weight % CaO, 0 to 5 weight % R2O where R2O is the sum of Li2O, Na2O and K2O, has a higher fiberizing temperature, e.g. 2400-2900° F. (1316-1593° C.) and/or a liquidus temperature that is below the fiberizing temperature by as little as 45° F. (25° C.). Another glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O, Na2O and K2O, has a fiberizing temperature less than about 2650° F. (1454° C.), and a ?T of at least 80° F. (45° C.).
    Type: Application
    Filed: December 21, 2009
    Publication date: July 1, 2010
    Inventors: Peter B. McGinnis, Douglas Hofmann, David J. Baker, John W. Wingert, Byron Bemis
  • Publication number: 20080141721
    Abstract: Forehearths that create a substantially homogeneous temperature to molten glass forming materials across the end position are provided. A gas cavity, a weir, a refractory block, or a heating element in the forehearth may be utilized to reduce a temperature gradient of molten glass forming materials across the end position. Reducing the temperature difference of the molten glass forming material across the end position permits for improved chemical and physical properties of the glass fibers and the end products formed from the glass fibers. In addition, a reduction in the temperature gradient across the end position produces a more homogenous glass fiber and glass product. Further, a reduction in the shear break rate occurs when the molten glass forming material has a temperature that is substantially the same across the end position, which results in a reduction in the breakage of glass fibers and an increase in manufacturing efficiency.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Inventors: Harry Adams, Bruno A. Purnode, Byron Bemis, Patrick J. Prescott, William L. Streicher, David J. Baker
  • Publication number: 20070220923
    Abstract: A glass fiberizing system includes a melter having a bottom wall with one or more openings through which molten glass flows. A bushing is located below the melter for containing a body of molten glass and for feeding molten glass to a fiberizing apparatus. A melter flow guide is positioned between the melter and the bushing. The melter flow guide has at least one guide wall positioned near the opening in the melter and extending into the body of molten glass in the bushing. The guide wall intercepts the molten glass exiting from the openings and prevents a free-fall of the molten glass into the body of glass in the bushing.
    Type: Application
    Filed: March 21, 2006
    Publication date: September 27, 2007
    Inventors: Anthony Oakleaf, Byron Bemis
  • Publication number: 20070144218
    Abstract: A fiber forming bushing comprises a baseplate having at least one hole and a bushing tip that is formed separately from the baseplate, supported in the hole in the baseplate, and welded to the baseplate. The bushing tip has an upper end and a lower end, and comprises a flange at the upper end of the bushing tip. A tapered entrance is provided at the upper end adjacent the flange. An upper cylindrical portion is provided adjacent the tapered entrance. A tapered middle portion is provided adjacent the upper cylindrical portion. A lower cylindrical portion is provided adjacent the tapered middle and extended to at outlet at the lower end of the bushing tip.
    Type: Application
    Filed: December 28, 2005
    Publication date: June 28, 2007
    Inventors: Anthony Oakleaf, Byron Bemis
  • Publication number: 20060065022
    Abstract: A fiber-forming bushing comprises a tip plate and a lateral support. The tip plate comprises at least two tip sections and the section spacing between the tip sections. The lateral support extends laterally along the section spacing.
    Type: Application
    Filed: December 12, 2005
    Publication date: March 30, 2006
    Inventors: Timothy Sullivan, Byron Bemis, James Keck, Jack Emerson