Patents by Inventor Byungha Shin

Byungha Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527669
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: December 13, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, David B. Mitzi, Byungha Shin, Teodor K. Todorov, Mark T. Winkler
  • Patent number: 10697072
    Abstract: The present disclosure relates to a photoelectrode including a catalyst retaining layer, a method of preparing the same, and a photoelectrochemical cell including the photoelectrode.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 30, 2020
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Byungha Shin, Bonhyeong Koo, Segi Byun
  • Patent number: 10355160
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, David B. Mitzi, Byungha Shin, Teodor K. Todorov, Mark T. Winkler
  • Patent number: 10304979
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 28, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20190062929
    Abstract: The present disclosure relates to a photoelectrode including a catalyst retaining layer, a method of preparing the same, and a photoelectrochemical cell including the photoelectrode.
    Type: Application
    Filed: March 16, 2018
    Publication date: February 28, 2019
    Inventors: Byungha SHIN, Bonhyeong KOO, Segi BYUN
  • Publication number: 20180261711
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: JEEHWAN KIM, DAVID B. MITZI, BYUNGHA SHIN, TEODOR K. TODOROV, MARK T. WINKLER
  • Publication number: 20180261710
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: JEEHWAN KIM, DAVID B. MITZI, BYUNGHA SHIN, TEODOR K. TODOROV, MARK T. WINKLER
  • Patent number: 10008625
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jeehwan Kim, David B. Mitzi, Byungha Shin, Teodor K. Todorov, Mark T. Winkler
  • Patent number: 9911879
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Patent number: 9741890
    Abstract: A method for forming a photovoltaic device includes forming an absorber layer with a granular structure on a conductive layer; conformally depositing an insulating protection layer over the absorber layer to fill in between grains of the absorber layer; and planarizing the protection layer and the absorber layer. A buffer layer is formed on the absorber layer, and a top transparent conductor layer is deposited over the buffer layer.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 22, 2017
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Supratik Guha, Jeehwan Kim, Mahadevaiyer Krishnan, Byungha Shin
  • Patent number: 9691847
    Abstract: A method for forming nanostructures includes bonding a flexible substrate to a crystalline semiconductor layer having a two-dimensional material formed on a side opposite the flexible substrate. The crystalline semiconductor layer is stressed in a first direction to initiate first cracks in the crystalline semiconductor layer. The first cracks are propagated through the crystalline semiconductor layer and through the two-dimensional material. The stress of the crystalline semiconductor layer is released to provide parallel structures including the two-dimensional material on the crystalline semiconductor layer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Jeehwan Kim, Hongsik Park, Byungha Shin
  • Publication number: 20160225927
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 4, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20160225939
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Application
    Filed: June 18, 2015
    Publication date: August 4, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20160204196
    Abstract: A method for forming nanostructures includes bonding a flexible substrate to a crystalline semiconductor layer having a two-dimensional material formed on a side opposite the flexible substrate. The crystalline semiconductor layer is stressed in a first direction to initiate first cracks in the crystalline semiconductor layer. The first cracks are propagated through the crystalline semiconductor layer and through the two-dimensional material. The stress of the crystalline semiconductor layer is released to provide parallel structures including the two-dimensional material on the crystalline semiconductor layer.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: CHRISTOS D. DIMITRAKOPOULOS, JEEHWAN KIM, HONGSIK PARK, BYUNGHA SHIN
  • Patent number: 9324794
    Abstract: A method for forming nanostructures includes bonding a flexible substrate to a crystalline semiconductor layer having a two-dimensional material formed on a side opposite the flexible substrate. The crystalline semiconductor layer is stressed in a first direction to initiate first cracks in the crystalline semiconductor layer. The first cracks are propagated through the crystalline semiconductor layer and through the two-dimensional material. The stress of the crystalline semiconductor layer is released to provide parallel structures including the two-dimensional material on the crystalline semiconductor layer.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Jeehwan Kim, Hongsik Park, Byungha Shin
  • Patent number: 9312132
    Abstract: A method for forming nanostructures includes bonding a flexible substrate to a crystalline semiconductor layer having a two-dimensional material formed on a side opposite the flexible substrate. The crystalline semiconductor layer is stressed in a first direction to initiate first cracks in the crystalline semiconductor layer. The first cracks are propagated through the crystalline semiconductor layer and through the two-dimensional material. The stress of the crystalline semiconductor layer is released to provide parallel structures including the two-dimensional material on the crystalline semiconductor layer.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Jeehwan Kim, Hongsik Park, Byungha Shin
  • Publication number: 20160093755
    Abstract: Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Byungha Shin, Yu Zhu
  • Patent number: 9287426
    Abstract: Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Byungha Shin, Yu Zhu
  • Publication number: 20150340536
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Application
    Filed: August 5, 2015
    Publication date: November 26, 2015
    Inventors: JEEHWAN KIM, DAVID B. MITZI, BYUNGHA SHIN, TEODOR K. TODOROV, MARK T. WINKLER
  • Patent number: 9153729
    Abstract: A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 6, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, David B. Mitzi, Byungha Shin, Teodor K. Todorov, Mark T. Winkler