Patents by Inventor C. Allen Smith

C. Allen Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8314040
    Abstract: A nonwoven web made from a polymeric fiber blend comprising at least one elastomeric polyolefin and at least one nonelastomeric polyolefin useful as the elastic base sheet for a nonwoven laminate is disclosed. Preferably, the polymeric blend will comprise a nonelastomeric resin in the range of from about 10 to about 90 percent by weight, and an elastomeric resin of from about 90 to about 10 percent by weight. The elastomeric polyolefin will have a density of less than about 0.885 g/cm3 and the nonelastomeric polyolefin will have a density of at least about 0.890 g/cm3. In one particular embodiment, the polymeric blend may comprise about 50 percent to about 90 percent by weight of a narrow molecular weight distribution polyethylene and about 50 percent to about 10 percent by weight of a nonelastomeric polyolefin such as a linear low density polyethylene.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 20, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: C. Allen Smith, Kenneth B. Close, Richard C. Beck, Jay S. Shultz, David J. Baer, Susan E. Shawver, Paul W. Estey, Deepak R. Parikh, Kenneth B. Stewart, Jr.
  • Patent number: 7910795
    Abstract: A technique for imparting latent elasticity to components of an absorbent article is provided. More specifically, a latent elastic film that contains a crosslinkable semi-crystalline polyolefin is initially incorporated into an absorbent article. The film is not highly elastic prior to crosslinking and is thus dimensionally stable. Consequently, the film need not be maintained in a mechanically stretched condition during attachment to other components of the absorbent article, which provides for greater freedom in the location and manner in which the components are attached together. Once incorporated into the absorbent article, the semi-crystalline polyolefin is crosslinked to form a three-dimensional network having elastic memory. The film may also be heat activated, either through crosslinking or an additional step, to cause the film to shrink and further improve its stretch characteristics.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 22, 2011
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Oomman P. Thomas, C. Allen Smith, James Austin
  • Publication number: 20080221540
    Abstract: A technique for imparting latent elasticity to components of an absorbent article is provided. More specifically, a latent elastic film that contains a crosslinkable semi-crystalline polyolefin is initially incorporated into an absorbent article. The film is not highly elastic prior to crosslinking and is thus dimensionally stable. Consequently, the film need not be maintained in a mechanically stretched condition during attachment to other components of the absorbent article, which provides for greater freedom in the location and manner in which the components are attached together. Once incorporated into the absorbent article, the semi-crystalline polyolefin is crosslinked to form a three-dimensional network having elastic memory. The film may also be heat activated, either through crosslinking or an additional step, to cause the film to shrink and further improve its stretch characteristics.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Oomman P. Thomas, C. Allen Smith, James Austin
  • Publication number: 20040192147
    Abstract: A nonwoven web made from a polymeric fiber blend comprising at least one elastomeric polyolefin and at least one nonelastomeric polyolefin useful as the elastic base sheet for a nonwoven laminate is disclosed. Preferably, the polymeric blend will comprise a nonelastomeric resin in the range of from about 10 to about 90 percent by weight, and an elastomeric resin of from about 90 to about 10 percent by weight. The elastomeric polyolefin will have a density of less than about 0.885 g/cm3 and the nonelastomeric polyolefin will have a density of at least about 0.890 g/cm3. In one particular embodiment, the polymeric blend may comprise about 50 percent to about 90 percent by weight of a narrow molecular weight distribution polyethylene and about 50 percent to about 10 percent by weight of a nonelastomeric polyolefin such as a linear low density polyethylene.
    Type: Application
    Filed: November 12, 2003
    Publication date: September 30, 2004
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: C. Allen Smith, Kenneth B. Close, Richard C. Beck, Jay S. Shultz, David J. Baer, Susan E. Shawver, Paul W. Estey, Deepak R. Parikh, Kenneth B. Stewart
  • Patent number: 6680265
    Abstract: A nonwoven web made from a polymeric fiber blend comprising at least one elastomeric polyolefin and at least one nonelastomeric polyolefin useful as the elastic base sheet for a nonwoven laminate is disclosed. Preferably, the polymeric blend will comprise a nonelastomeric resin in the range of from about 10 to about 90 percent by weight, and an elastomeric resin of from about 90 to about 10 percent by weight. The elastomeric polyolefin will have a density of less than about 0.885 g/cm3 and the nonelastomeric polyolefin will have a density of at least about 0.890 g/cm3. In one particular embodiment, the polymeric blend may comprise about 50 percent to about 90 percent by weight of a narrow molecular weight distribution polyethylene and about 50 percent to about 10 percent by weight of a nonelastomeric polyolefin such as a linear low density polyethylene.
    Type: Grant
    Filed: February 21, 2000
    Date of Patent: January 20, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: C. Allen Smith, Kenneth B. Close, Richard C. Beck, Jay S. Shultz, David J. Baer, Susan E. Shawver, Paul W. Estey, Deepak R. Parikh, Kenneth B. Stewart, Jr.