Patents by Inventor C. Brent Bargeron

C. Brent Bargeron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6969605
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 29, 2005
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Publication number: 20030211011
    Abstract: A pH sensor system (10) and method capable of monitoring the pH level of a medium based on the characteristics of a chromatic pH sensitive material employed in the pH sensor system is provided. The pH sensor system includes at least a housing (12) having at least one transparent surface (14); a light sensitive circuitry (15), e.g., a LED (16) and photo-detector (18), enclosed within the housing; and, a chromatic pH sensitive material (20) overlaying at least a portion of the transparent surface having the characteristic of becoming saturated when an ambient pH level reaches a predetermined level such that the light sensitive circuitry detects a different intensity of incident light when the chromatic pH sensitive material is saturated than when the chromatic pH sensitive material is not saturated. As the pH level of the medium, e.g., concrete, storage tanks containing chemical reagents, etc.
    Type: Application
    Filed: December 4, 2002
    Publication date: November 13, 2003
    Inventors: Terry E. Phillips, Rengaswamy Srinivasan, C. Brent Bargeron, Hassan Saffarian, Elizabeth R. Schemm
  • Publication number: 20010053556
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Application
    Filed: July 16, 2001
    Publication date: December 20, 2001
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 6261848
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: July 17, 2001
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 4148585
    Abstract: A laser Doppler velocimeter which can measure fluid flow in three dimensions, employing a laser beam projected through a rotating diffraction grating and spaced lenses, with a beam splitter in the major optical path between two lenses ahead of the flow channel through which the fluid passes. Selected pairs of laser-derived beams are directed through the fluid and intersect at a predetermined point in the fluid. The movement of the particles through interference patterns formed by the intersecting laser-derived beams generates further-modulated scattered light, which is focused on a photomultiplier tube, from the output of which a fluid velocity directional component signal is derived for each pair. There are four laser-divided beams, and different pairs of these beams can be selected, to provide measurements from which the components of the fluid velocity along three mutually orthogonal directions can be derived.
    Type: Grant
    Filed: February 11, 1977
    Date of Patent: April 10, 1979
    Assignee: The United States of America as represented by the Department of Health, Education & Welfare
    Inventors: C. Brent Bargeron, Owen J. Deters