Patents by Inventor C. Covington

C. Covington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11989980
    Abstract: An example method includes receiving, at a computing system, a first user input from a user interface during operation of a vehicle and responsive to receiving the first user input, determining a time of reception for the first user input. The method further includes receiving a first set of parameters from the vehicle that correspond to a first parameter identifier (PID). The method also includes determining a time of reception for each parameter, and based on the time of reception for the first user input and the time of reception for each parameter of the first set of parameters, determining a first temporal position for an indicator configured to represent the first user input on a graph of the parameters corresponding to the first PID. The method further includes displaying, on a display interface, the graph of the parameters corresponding to the first PID with the indicator in the first temporal position.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: May 21, 2024
    Assignee: Snap-on Incorporated
    Inventors: Joshua C. Covington, Patrick S. Merg, Jacob G. Foreman
  • Publication number: 20240127641
    Abstract: An example method includes determining identifying information for a vehicle to be serviced. The method further includes receiving at least one symptom identifier for the vehicle. The method further includes sending a request over a communication network to a remote server for a PID filter list for the vehicle, the request comprising the identifying information for the vehicle and the at least one symptom identifier for the vehicle. The method additionally includes receiving a response to the request over the communication network from the remote server, the response comprising the PID filter list for the vehicle. The method further includes determining, based on the PID filter list for the vehicle, a symptom-based subset of PIDs for the vehicle from a set of available PIDs. The method additionally includes displaying, on a display interface, the symptom-based subset of PIDs for the vehicle.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Inventors: Bradley R. Lewis, Patrick S. Merg, Roy S. Brozovich, Jacob G. Foreman, Joshua C. Covington, Brett A. Kelley, Steven E. Miskovic
  • Publication number: 20240051995
    Abstract: There is currently a high demand for new therapeutic antibiotics with new mechanisms of action. Disclosed are two small molecules, tryglysin A and B, with novel chemical structures and potent antibiotic activity against a narrow spectrum of bacteria. This narrow spectrum of activity indicates the tryglysins could be working through a novel antibiotic mechanism of action. Due to this narrow spectrum, the tryglysins could be used as highly targeted therapeutics to treat or prevent disease without disturbing other important, “beneficial” bacteria within the human microbiome, which is a great improvement over virtually all other clinically used antibiotics that are broad-spectrum. The tryglysins are potent against several streptococcal pathogens, including Streptococcus pneumonia, the leading cause of pneumonia, and Streptococcus mutans, the primary causative agent of tooth decay and gum disease.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 15, 2024
    Applicant: The Trustees of Princeton University
    Inventors: Mohammad R. SEYEDSAYAMDOST, Michael J. FEDERLE, Brett C. COVINGTON, Leah B. BUSHIN, Britta E. RUED, John AMBROSE
  • Patent number: 11887413
    Abstract: An example method includes determining identifying information for a vehicle to be serviced. The method further includes receiving at least one symptom identifier for the vehicle. The method further includes sending a request over a communication network to a remote server for a PID filter list for the vehicle, the request comprising the identifying information for the vehicle and the at least one symptom identifier for the vehicle. The method additionally includes receiving a response to the request over the communication network from the remote server, the response comprising the PID filter list for the vehicle. The method further includes determining, based on the PID filter list for the vehicle, a symptom-based subset of PIDs for the vehicle from a set of available PIDs. The method additionally includes displaying, on a display interface, the symptom-based subset of PIDs for the vehicle.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 30, 2024
    Assignee: Snap-on Incorporated
    Inventors: Bradley R. Lewis, Patrick S. Merg, Roy S. Brozovich, Jacob G. Foreman, Joshua C. Covington, Brett A. Kelley, Steven E. Miskovic
  • Publication number: 20240001560
    Abstract: Certain aspects relate to systems and techniques for preparing a robotic system for surgery. In one aspect, the method includes a robotic arm, a sensor configured to generate information indicative of a location of the robotic arm, a processor, and at least one computer-readable memory in communication with the processor and having stored thereon computer-executable instructions. The instructions are configured to cause the processor to receive the information from the sensor, determine that the robotic arm is located at a first position in which a first axis associated with the robotic arm is not in alignment with a second axis associated with a port installed in a patient, and provide a command to move the robotic arm to a second position in which the first axis associated with the robotic arm is in alignment with the second axis.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Benjamin Robert FREDRICKSON, Travis C. COVINGTON, Jason Tomas WILSON
  • Publication number: 20230398963
    Abstract: Systems and methods for augmenting measurements with automotive repair information are described herein. A method may include a server storing a plurality of service scenarios defined for at least one display device. Each stored service scenario includes at least one setup instruction, and each setup instruction is based on at least one capability of at least one CVST. The method may further include the server receiving data indicating an operating condition of a vehicle from a first display device of the at least one display device. Based on the stored plurality of service scenarios and the received data, the server may determine that a first stored service scenario of the plurality of service scenarios matches the operating condition. The server may then determine a first CVST having a first capability that is associated with the first display device, and transmitting the first stored service scenario to the first display device.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Inventors: Patrick S. Merg, Jacob G. Foreman, Roy S. Brozovich, Joshua C. Covington, Kahlil H. Cacabelos
  • Publication number: 20230390008
    Abstract: Robotic medical systems can be capable of kinematic optimization using shared robotic degrees-of-freedom. A robotic medical system can include a patient platform, an adjustable arm support coupled to the patient platform, and at least one robotic arm coupled to the adjustable arm support. The at least one robotic arm can be coupled to a medical tool. The robotic medical system includes a first link and a second link. Each of the first link and the second link includes a first end coupled to the adjustable arm support and a second end coupled to a base of the patient platform, for rotating the adjustable arm support relative to the patient platform. The robotic medical system can also include a processor configured to adjust a position of the adjustable arm support and the at least one robotic arm while maintaining a remote center of movement of the medical tool.
    Type: Application
    Filed: August 21, 2023
    Publication date: December 7, 2023
    Inventors: Nicholas J. EYRE, Sean Patrick KELLY, Sven WEHRMANN, Yoichiro DAN, Travis C. COVINGTON, Yanan HUANG, David Stephen MINTZ
  • Publication number: 20230372056
    Abstract: A robotic surgical system can include one or more adjustable arm supports that support one or more robotic arms. The adjustable arm supports can be configured to attach to either a table, a column support of the table, or a base of the table to deploy the adjustable arm supports and robotic arms from a position below the table. In some examples, the adjustable arm supports include at least four degrees of freedom that allow for adjustment of the position of a bar or rail to which the robotic arms are mounted. One of the degrees of freedom can allow the adjustable arm support to be adjusted vertically relative to the table.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 23, 2023
    Inventors: Nicholas J. EYRE, Colin Allen WILSON, Andrew F. O'ROURKE, Travis C. COVINGTON, Sven WEHRMANN
  • Publication number: 20230355456
    Abstract: Certain aspects relate to systems and techniques for operating a medical platform that may include a table with a base and table top, one or more robotic arms that are coupled to the table, one or more wheel assemblies coupled to the base to support and move the base in a physical environment, and an input device configured to receive user inputs of a first type. The mobile medical platform may be configured to receive a first user input of the first input type via the input device. The mobile medical platform may be configured to, in response to receiving the first user input of the first input type and in accordance with a determination that the first user input meets first criteria, initiate first movement of the at least one motorized wheel in accordance with the first user input of the first input type.
    Type: Application
    Filed: June 27, 2023
    Publication date: November 9, 2023
    Inventors: Fabien Y. SCHMITT, Christopher Michael NORKOSKI, Travis C. COVINGTON, Anne Donahue DOISNEAU, Alexander Tarek HASSAN, Eloi LE ROUX
  • Patent number: 11801605
    Abstract: Certain aspects relate to systems and techniques for preparing a robotic system for surgery. In one aspect, the method includes a robotic arm, a sensor configured to generate information indicative of a location of the robotic arm, a processor, and at least one computer-readable memory in communication with the processor and having stored thereon computer-executable instructions. The instructions are configured to cause the processor to receive the information from the sensor, determine that the robotic arm is located at a first position in which a first axis associated with the robotic arm is not in alignment with a second axis associated with a port installed in a patient, and provide a command to move the robotic arm to a second position in which the first axis associated with the robotic arm is in alignment with the second axis.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: October 31, 2023
    Assignee: Auris Health, Inc.
    Inventors: Benjamin Robert Fredrickson, Travis C. Covington, Jason Tomas Wilson
  • Patent number: 11790705
    Abstract: An example method includes receiving, at a computing system, parameters from a vehicle, wherein the parameters correspond to a set of associated parameter identifiers (PIDs), and determining, by the computing system, one or more thresholds for one or more PIDs of the set of associated PIDs. The example method additionally includes determining, by the computing system, one or more indicators displayable on a first graph of parameters corresponding to a first PID of the set of associated PIDs. For instance, at least one indicator of the one or more indicators represents a parameter corresponding to a second PID of the set of associated PIDs breaching a threshold associated with the second PID. The example method further includes displaying, by the computing system on a graphical user interface, the first graph of parameters corresponding to the first PID and the one or more indicators on the first graph.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 17, 2023
    Assignee: Snap-on Incorporated
    Inventor: Joshua C. Covington
  • Patent number: 11787371
    Abstract: Systems and methods for augmenting measurements with automotive repair information are described herein. A method may include a server storing a plurality of service scenarios defined for at least one display device. Each stored service scenario includes at least one setup instruction, and each setup instruction is based on at least one capability of at least one CVST. The method may further include the server receiving data indicating an operating condition of a vehicle from a first display device of the at least one display device. Based on the stored plurality of service scenarios and the received data, the server may determine that a first stored service scenario of the plurality of service scenarios matches the operating condition. The server may then determine a first CVST having a first capability that is associated with the first display device, and transmitting the first stored service scenario to the first display device.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: October 17, 2023
    Assignee: Snap-on Incorporated
    Inventors: Patrick S. Merg, Jacob G. Foreman, Roy S. Brozovich, Joshua C. Covington, Kahlil H. Cacabelos
  • Publication number: 20230311653
    Abstract: A method includes writing vehicle data parameters (VDPs) into a memory in order of a vehicle outputting the VDPs. The method also includes displaying a first view of a graphical user interface (GUI) on a display. The GUI includes one or more VDP graphs, a graph-axis control, and a first vehicle operating condition (VOC) indicator at the graph-axis control. The method also includes displaying a second view of the GUI on the display in response to a selection of the first VOC indicator. The first and second views include first and second sets of VDP graphs, respectively. The second set of VDP graphs includes VDPs not represented in the first set of VDP graphs. Graph-axis control segments within the graph-axis control in the first and second views cover different portions of the graph-axis control. The graph-axis control segments correspond to different portions of the VDPs written into the memory.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Joseph R. Grammatico, Joshua C. Covington, Roy S. Brozovich, Patrick S. Merg
  • Patent number: 11771510
    Abstract: Robotic medical systems can be capable of kinematic optimization using shared robotic degrees-of-freedom. A robotic medical system can include a patient platform, an adjustable arm support coupled to the patient platform, and at least one robotic arm coupled to the adjustable arm support. The at least one robotic arm can be coupled to a medical tool. The robotic medical system includes a first link and a second link. Each of the first link and the second link includes a first end coupled to the adjustable arm support and a second end coupled to a base of the patient platform, for rotating the adjustable arm support relative to the patient platform. The robotic medical system can also include a processor configured to adjust a position of the adjustable arm support and the at least one robotic arm while maintaining a remote center of movement of the medical tool.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: October 3, 2023
    Assignee: Auris Health, Inc.
    Inventors: Nicholas J. Eyre, Sean Patrick Kelly, Sven Wehrmann, Yoichiro Dan, Travis C. Covington, Yanan Huang, David Stephen Mintz
  • Publication number: 20230282041
    Abstract: An example method for outputting a PID filter list (PFL) includes: receiving RO data from one or more ROs that indicate particular vehicle identifying information (PVII), at least one symptom identifier, and a particular vehicle component; determining, symptom-to-parameter-identifier (PID) mapping data (MD) based on the received RO data and component-to-PID MD; determining, based on the set of available PIDs for the SOV and the symptom-to-PID MD, a PFL, wherein the PFL is associated with the PVII and the at least one symptom identifier, and wherein the PFL indicates a symptom-based subset of PIDs from the set of available PIDs for the SOV; receiving, a request sent over a communication network from a display device, wherein the request comprises the PVII and the at least one symptom identifier; and transmitting, over the communication network to the display device, a response to the request, the response comprising the PFL.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 7, 2023
    Inventors: Bradley R. Lewis, Patrick S. Merg, Roy S. Brozovich, Jacob G. Foreman, Joshua C. Covington, Brett A. Kelley, Steven E. Miskovic
  • Patent number: 11744670
    Abstract: A robotic surgical system can include one or more adjustable arm supports that support one or more robotic arms. The adjustable arm supports can be configured to attach to either a table, a column support of the table, or a base of the table to deploy the adjustable arm supports and robotic arms from a position below the table. In some examples, the adjustable arm supports include at least four degrees of freedom that allow for adjustment of the position of a bar or rail to which the robotic arms are mounted. One of the degrees of freedom can allow the adjustable arm support to be adjusted vertically relative to the table.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: September 5, 2023
    Assignee: Auris Health, Inc.
    Inventors: Nicholas J. Eyre, Colin Allen Wilson, Andrew F. O'Rourke, Travis C. Covington, Sven Wehrmann
  • Publication number: 20230267777
    Abstract: A diagnostic tool includes a processor, display, and memory storing instructions to perform scan tool functions (STF) including transmitting a message to a vehicle. The STF include first STF for a first system of the vehicle. Additional stored instructions are executable to display a first user-interface screen (UIS) including a first user-selectable control (USC) including an indicator of a first scanner job performable on the vehicle, and to display a second UIS instead of the first UIS in response to a selection of the first USC. The second UIS incudes: a second USC including an indicator of the first STF for the first system of the vehicle, and guidance for performing a procedure of the first scanner job. The stored instructions are executable to transmit a first vehicle data message to a component of the first system in response to a selection of the second USC.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Patrick S. Merg, Jacob G. Foreman, Roy S. Brozovich, Joseph R. Grammatico, Joshua C. Covington
  • Publication number: 20230252830
    Abstract: A method comprising determining a functional test and one or more parameter identifiers (PIDs) corresponding to the functional test. The method also includes transmitting first and second sets of vehicle data messages to a vehicle. The first set of vehicle data messages includes a first vehicle data message to request performance of the functional test and the second set of vehicle data messages includes vehicle data messages including the one or more PIDs. Additionally, the method includes receiving, from the vehicle, a third set of vehicle data message including parameter values corresponding to the one or more PIDs. Furthermore, the method includes outputting, by the processor on a display, a first graphical user interface including a user-selectable control corresponding to performance of the functional test, a textual description corresponding to each of the one or more PIDs and parameter values corresponding to the one or more PIDs.
    Type: Application
    Filed: February 8, 2023
    Publication date: August 10, 2023
    Inventors: Patrick S. Merg, Roy S. Brozovich, Jacob G. Foreman, Joshua C. Covington, Brett A. Kelley, Joseph R. Grammatico, Bradley R. Lewis, Thomas J. Ward, Damien J. Coleman
  • Publication number: 20230252824
    Abstract: A method for performing test set. After determining the test set and a vehicle identifier, a processor of a computing system determines: (1) a component test (CT) and a functional test command (FTC), (2) the CT and a first set of parameter identifiers (PIDs), or (3) the FTC and a second set of PIDs. The CT corresponds to a particular vehicle component. The FTC is for requesting control of a controllable vehicle component. If the CT is determined, a test device is configured to be in a mode to perform the CT. If the FTC is determined, a GUI including a user-selectable control corresponding to the FTC is displayed. If the first or second set of PIDs is determined, a set of parameter values corresponding to the determined set of PIDs is received and displayed in response to vehicle data messages transmitted by the computing system.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 10, 2023
    Inventors: Patrick S. Merg, Roy S. Brozovich, Jacob G. Foreman, Joshua C. Covington, Brett A. Kelley, Joseph R. Grammatico, Bradley R. Lewis, Thomas J. Ward, Damien J. Coleman
  • Patent number: D1028250
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: May 21, 2024
    Assignee: Auris Health, Inc.
    Inventors: Thomas G. T. Brisebras, Juan B. Bajana Merizalde, Fabien Y. Schmitt, Christian de Jesus Ruiz, Andrew Martin Torrance, Travis C. Covington, Taylor R. Nicholson, Colin Allen Wilson